Answer:
the average force 11226 N
Explanation:
Let's analyze the problem we are asked for the average force, during the crash, we can find this from the impulse-momentum equation, but this equation needs the speeds and times of the crash that we could look for by kinematics.
Let's start looking for the stack speeds, it has a free fall, from rest (Vo=0)
Vf² = Vo² - 2gY
Vf² = 0 - 2 9.8 7.69 = 150.7
Vf = 12.3 m / s
This is the speed that the battery likes when it touches the beam. They also give us the distance it travels before stopping, let's calculate the time
Vf = Vo - g t
0 = Vo - g t
t = Vo / g
t = 12.3 / 9.8
t = 1.26 s
This is the time to stop
Now let's use the equation that relates the impulse to the amount of movement
I = Δp
F t = pf-po
The amount of final movement is zero because the system stops
F = - po / t
F = - mv / t
F = - 1150 12.3 / 1.26
F = -11226 N
This is the average force exerted by the stack on the vean
The mineral with Mohs hardness would be scratched because the mineral with Mohs 7 hardness is stronger than the Mohs 5 mineral. Eventually, that mineral would turn into dust if you kept rubbing it.
The correct option to the question is Matter.
Matter makes up everything. matter can be solid, liquid, or gas. matter is made up of atoms, or tiny particles that are the smallest unit of matter.
Moreover, Matter can be described as,
Matter is anything that has occupies space (has mass and volume).
For more information visit:
brainly.com/question/13280491
<span>The pythagorean theorem addresses the length of the hypotenuse in relation to the length of the legs. The square root of the length of the hypotenuse is equal to the sum of one leg squared plus the other leg squared. In other words, A squared plus B squared equals C squared where A and B are the lengths of the legs of the triangle and C is the length of the hypotenuse.</span>
Answer:
Option C. 5,000 kg m/s
Explanation:
<u>Linear Momentum on a System of Particles
</u>
Is defined as the sum of the momenta of each particles in a determined moment. The individual momentum is the product of the mass of the particle by its speed
P=mv
The question refers to an 100 kg object traveling at 50 m/s who collides with another object of 50 kg object initially at rest. We compute the moments of each object


The sum of the momenta of both objects prior to the collision is

