"The reaction will absorb energy" is the best conclusion according to the energy diagram of the chemical reaction.
<u>Option: B</u>
<u>Explanation:</u>
The chemical bonds in the reactions are broken and formed as per process and contributed by three major steps: reactants, transition phase and product formation. Here transition phase is in equilibrium stage drived by activation energy, where bond is partially formed and partially broken, located at higher energy level then the starters.
The reactant's energy level is less relative to the products as seen in the endothermic reactions' energy diagram, which depicts that the products are less balanced than reactants. Here when the reaction is forced to the forward direction, then it direct towards the more unbalance entities. As energy is absorbed in the endothermic reaction from surrounding, thus the enthalpy change (ΔH) for the reaction is positive.
The Correct Answer is Eletric Current I think
Answer:
|||||||||||||||||||||||||||||||
<u>Given:</u>
Mass of Ag = 1.67 g
Mass of Cl = 2.21 g
Heat evolved = 1.96 kJ
<u>To determine:</u>
The enthalpy of formation of AgCl(s)
<u>Explanation:</u>
The reaction is:
2Ag(s) + Cl2(g) → 2AgCl(s)
Calculate the moles of Ag and Cl from the given masses
Atomic mass of Ag = 108 g/mol
# moles of Ag = 1.67/108 = 0.0155 moles
Atomic mass of Cl = 35 g/mol
# moles of Cl = 2.21/35 = 0.0631 moles
Since moles of Ag << moles of Cl, silver is the limiting reagent.
Based on reaction stoichiometry: # moles of AgCl formed = 0.0155 moles
Enthalpy of formation of AgCl = 1.96 kJ/0.0155 moles = 126.5 kJ/mol
Ans: Formation enthalpy = 126.5 kJ/mol
H 3 0 + is hydronium ion. OH- is hydroxide ion. H+ is hydrogen ion