Answer:
Replacement-Level Fertility
Another important population characteristic that differ btw develop nation and developing nations is relates to births is replacement-level fertility. Replacement-level fertility is the fertility rate that will result in the replacement of the parents in the population. Again, in an ideal world, the human replacement-level fertility rate would be exactly two. This would mean that each couple would produce two offspring that would replace them in the population. If this occurred, then the human population would stay at a stable rate
Calm, sunny days with wind moving away from the center.
Answer: the pair of sunglasses
Explanation:
A good pair of sunglasses are composed of abosorbent lenses that filter the sunlight that affects the eyes retina, especially ultraviolet (UV). So, these sunglasses are used to reduce the amount of light or radiant energy transmitted.
On the other hand, normal reading glasses (in which the lens glass has not been treated to filter ultraviolet sunlight) will let UV rays pass through.
Therefore, if both glasses are exposed to sunlight, the sunglasses are expected to be warmer by absorbing that radiant energy and preventing it from reaching the eyes.
Answer:
D) 763 nm
Explanation:
Calculation for the wavelength of light
Using this formula
Wavelength of light=Delta Y*Distance / Length
Where,
Delta Y represent the 2nd order bright fringe
Length represent the distance between both the slits and the screen
Distance represent the Distance between the slits
Let note that cm to m = (4.2) x 10^-2 and mm to m= ( 0.0400x 10^-3)
Now Let plug in the formula
Wavelength of light=[(4.2 x 10^-2m)(0.0400 x 10^-3m) / 2(1.1m)]*10^-7 meters
Wavelength of light=[(0.042m) (0.0004m)/2.2m]*10^-7 meters
Wavelength of light =(0.0000168m/2.2m)*10^-7 meters
Wavelength of light =7.63 *10^-7 meters
Wavelength of light =763 nm
Therefore the Wavelength of light will be 763 nm
Explanation:
Given that,
Initial speed of the car, u = 88 km/h = 24.44 m/s
Reaction time, t = 2 s
Distance covered during this time, 
(a) Acceleration, 
We need to find the stopping distance, v = 0. It can be calculated using the third equation of motion as :


s = 74.66 meters
s = 74.66 + 48.88 = 123.54 meters
(b) Acceleration, 


s = 37.33 meters
s = 37.33 + 48.88 = 86.21 meters
Hence, this is the required solution.