Answer: 15.66 °
Explanation: In order to solve this proble we have to consirer the Loretz force for charge partcles moving inside a magnetic field. Thsi force is given by:
F=q v×B = qvB sin α where α is teh angle between the velocity and magnetic field vectors.
From this expression and using the given values we obtain the following:
F/(q*v*B) = sin α
3.8 * 10^-13/(1.6*10^-19*8.9*10^6* 0.96)= 0.27
then α =15.66°
Option D is correct. The speed at which the earth's surface moves because of the earth's rotation will then be equivalent to -10³ km/hr
Speed is a body is defined as the ratio of the distance with respect to the time taken by the body. Mathematically:
Speed = Distance/Time
GIven the following
Distance = 104km/hr
If it is 6:00 p.m. in New York, it is 7:00 a.m. of the next day of the week in Tokyo, this means that the time difference between New York and Tokyo is 11 hours.
Time = -11 hours
Get the required speed
Speed = 104/-11
Speed = -9.454545
Speed = -10km/hr
The speed at which the earth's surface moves because of the earth's rotation will then be equivalent to -10³ km/hr
Learn more here: brainly.com/question/2583051
Hard surfaces reflect sound back into the room, while carpets help to absorb the sound so it reflects less
The car travels at a speed of 25m/s.
<u>Explanation:</u>
Given-
Mass, m = 1500kg
Coefficient of friction, μk = 0.47
Distance, x = 68m
Speed, s = ?
We know,

and
F = μ X m X g
Therefore,
μ * m * g = m * a
μ * g = a
Let, g = 9.8m/s²
So,


We know,

where, v is the final velocity
u is the initial velocity
a is the acceleration
s is the distance
If the car comes to rest, the final velocity, v becomes 0.
So,

The car travels at a speed of 25m/s.