Answer:
5 I think will be none of the above and 6 could be all of the above
Answer:
4500 N
Explanation:
When a body is moving in a circular motion it will feel an acceleration directed towards the center of the circle, this acceleration is:
a = v^2/r
where v is the velocity of the body and r is the radius of the circumference:
Therefore, a body with mass m, will feel a force f:
f = m v^2/r
Therefore we need another force to keep the body(car) from sliding, this will be given by friction, remember that friction force is given a the normal times a constant of friction mu, that is:
fs = μN = μmg
The car will not slide if f = fs, i.e.
fs = μmg = m v^2/r
That is, the magnitude of the friction force must be (at least) equal to the force due to the centripetal acceleration
fs = (1000 kg) * (30m/s)^2 / (200 m) = 4500 N
Assuming Earth's gravity, the formula for the flight of the particle is:
<span>s(t) = -16t^2 + vt + s = -16t^2 + 144t + 160. </span>
<span>This has a maximum when t = -b/(2a) = -144/[2(-16)] = -144/(-32) = 9/2. </span>
<span>Therefore, the maximum height is s(9/2) = -16(9/2)^2 + 144(9/2) + 160 = 484 feet. </span>
7.625 Newtons
work = force× distance
Newtons is an accepted value for force
so take the total 224 joules and decide by distance 32 meters to find force in Newtons
Answer:
Yes both = and - g can be felt by a rider in a roller coaster.
Explanation:
It is crucial to understand how we feel gravity in this case.
We humans have no sensory organs to directly detect magnitude and direction like some birds and other creatures, but then how do we we feel gravity?
When we stand on our feet we feel our weight due to the normal reaction of floor on our feet trying to keep us stand and our weight trying to crush us down. In an elevator we feel difference in our weight (difference magnitudes of gravity) but actually we are feeling the differences in normal reactions under different accelerations of the elevator.
In the case of roller coaster you will feel +g as you sit on a chair in it, but will feel -g when you are in upside down position as roller coaster move.
When you are seated you will feel the normal reaction of seat on you giving you the feeling +g and the support of the buckles to stay in the roller coaster when you are upside down will give you the -g feeling.
<u>This is just the physics approach</u>, a biological approach can be given in association with sensors relating to ears.