Answer:
6.4 J
Explanation:
m = mass of the bullet = 10 g = 0.010 kg
v = initial velocity of bullet before collision = 1.8 km/s = 1800 m/s
v' = final velocity of the bullet after collision = 1 km/s = 1000 m/s
M = mass of the block = 5 kg
V = initial velocity of block before collision = 0 m/s
V' = final velocity of the block after collision = ?
Using conservation of momentum
mv + MV = mv' + MV'
(0.010) (1800) + (5) (0) = (0.010) (1000) + (5) V'
V' = 1.6 m/s
Kinetic energy of the block after the collision is given as
KE = (0.5) M V'²
KE = (0.5) (5) (1.6)²
KE = 6.4 J
<u>Given data</u>
Determine Internal energy of gas N₂, (U) = ?
Temperature (T) = 25° C
= 25+273 = 298 K,
Gas constant (R) = 8.31 J/ mol-K ,
Number of moles (n) = 3 moles,
<u>Internal energy of N₂ </u>
Internal energy is a property of thermodynamics, the concept of internal energy can be understand by ideal gas. For example N₂, the observations for oxygen and nitrogen at atmospheric temperatures, f=5, (where f is translational degrees of freedom).
So per kilogram of gas,
The internal energy (U) = 5/2 .n.R.T
= (5/2) × 3 × 8.31 ×298
= 18572.85 J
<em>The internal energy of the N₂ is 18,572.85 J and it is approximately equal to 18,600 J given in the option B.</em>
Answer:
Explanation:
I'm pretty sure the answer would be deductive reasoning. Deductive reasoning relies on making logical premises and basing a conclusion around those premises. It does not rely on making inferences and then assuming those inferences to be true.
The inductance of a solenoid is given by:

where

is the vacuum permeability
N is the number of turns of the solenoid
A is the area of one loop of the solenoid
l is its length
For the solenoid in our problem, N=500, and the radius of one loop is r=0.025 m, so the area of one loop is

and its length is l=0.20 m
So the inductance of the solenoid is