The temperature will be the pressure of 130 ka
To determine the force that acts on the mass, just multiply the mass by the gravitational field. Using the given data,
F = (2.50 kg)(14 N/kg) = 35 N
Therefore, the force that acts on the mass is equal to 35 N.
I believe that the answer is A but correct me if i’m wrong
Answer:
e) Be four times greater
Explanation:
Here we have to use Newton's gravitational law that relates the gravitational force between two objects with their masses (
&
) and the distance between them (
) in the next way:
(2)
Now if distance between asteroids is halved:



Note that
because (1) is F so:

It's four times greater!
Answer:
<h2><em>
12.45eV</em></h2>
Explanation:
Before calculating the work function, we must know the formula for calculating the kinetic energy of an electron. The kinetic energy of an electron is the taken as the difference between incident photon energy and work function of a metal.
Mathematically, KE = hf - Ф where;
h is the Planck constant
f is the frequency = c/λ
c is the speed of light
λ is the wavelength
Ф is the work function
The formula will become KE = hc/λ - Ф. Making the work function the subject of the formula we have;
Ф = hc/λ - KE
Ф = hc/λ - 1/2mv²
Given parameters
c = 3*10⁸m/s
λ = 97*10⁻⁹m
velocity of the electron v = 3.48*10⁵m/s
h = 6.62607015 × 10⁻³⁴
m is the mass of the electron = 9.10938356 × 10⁻³¹kg
Substituting the given parameters into the formula Ф = hc/λ - 1/2mv²
Ф = 6.63 × 10⁻³⁴*3*10⁸/97*10⁻⁹ - 1/2*9.11*10⁻³¹(3.48*10⁵)²
Ф = 0.205*10⁻¹⁷ - 4.555*10⁻³¹*12.1104*10¹⁰
Ф = 0.205*10⁻¹⁷ - 55.163*10⁻²¹
Ф = 0.205*10⁻¹⁷ - 0.0055.163*10⁻¹⁷
Ф = 0.1995*10⁻¹⁷Joules
Since 1eV = 1.60218*10⁻¹⁹J
x = 0.1995*10⁻¹⁷Joules
cross multiply
x = 0.1995*10⁻¹⁷/1.60218*10⁻¹⁹
x = 0.1245*10²
x = 12.45eV
<em>Hence the work function of the metal in eV is 12.45eV</em>