Answer:
0.29mol/L or 0.29moldm⁻³
Explanation:
Given parameters:
Mass of MgSO₄ = 122g
Volume of solution = 3.5L
Molarity is simply the concentration of substances in a solution.
Molarity = number of moles/ Volume
>>>>To calculate the Molarity of MgSO₄ we find the number of moles using the mass of MgSO₄ given.
Number of moles = mass/ molar mass
Molar mass of MgSO₄:
Atomic masses: Mg = 24g
S = 32g
O = 16g
Molar mass of MgSO₄ = [24 + 32 + (16x4)]g/mol
= (24 + 32 + 64)g/mol
= 120g/mol
Number of moles = 122/120 = 1.02mol
>>>> From the given number of moles we can evaluate the Molarity using this equation:
Molarity = number of moles/ Volume
Molarity of MgSO₄ = 1.02mol/3.5L
= 0.29mol/L
IL = 1dm³
The Molarity of MgSO₄ = 0.29moldm⁻³
Answer: kg= 0.37
Explanation:
Use the molality formula.
M= m/kg
Answer:
Brown color of the solution decreases
Explanation:
is brown in color whereas
is colorless.
Equilibrium reaction between
and
is as follows:

As per the Le Chatelier's principle, if pressure of a equilibrium is increased, the equilibrium will shift in the direction having fewer no. of moles of gases.
In the given equilibrium,
side has more no. of moles. So on increasing pressure, equilibrium will shift towards the side of
or more formation of
will take place.
Therefore, more
will decompose that will decrease the brown color of the solution as
is colorless.
Answer is: <span>an atomic radius.
</span>The atomic radius<span> of a </span>chemical element<span> is a measure of the size of its atom.
</span>The atomic radius varies with increasing atomic number, but usually increases because of increasing of number of electrons.
The atomic radius decreases across the periods because an increasing number of protons, because <span>greater attraction between the protons and electrons.</span>
Answer:
Answered B
Explanation:
The earth moves which makes the stars and everything in space seem like its moving