The answer to the question<u> What shape is the graph produced by a force vs acceleration graph</u> is A. Linear
Since Force, F = ma where m = mass and a = acceleration. For constant mass, F ∝ a. That is, F is directly proportional to acceleration, a.
Since this is a linear relationship, the graph of force vs acceleration will be linear.
The answer to the question<u> What shape is the graph produced by a force vs acceleration graph</u> is A. Linear
Learn more about graphs here:
brainly.com/question/24322515
Answer:
Explanation:
The most important thing to remember about parabolic motion in physics is that when an object reaches its max height, the velocity right there at the highest point is 0. Use this one-dimensional motion equation to solve this problem:
v = v₀ + at and filling in:
0 = v₀ + (-9.8)(4.0) **I put in 4.0 for time so we have more than just 1 sig fig here**
0 = v₀ - 39 and
-v₀ = -39 so
v₀ = 39 m/s
Answer:
Ground-state atom
Explanation:
When an atom is not excited, it is in its ground-state, which we refer as "standard" or "normal" state.
(Hopefully that helped you!)
GOOD LUCK
Astrophysicist Dr. D
Answer:
The answer is a," their receptors are sensitive to chemical molecules."
R = 0.407Ω.
The resistance R of a particular conductor is related to the resistivity ρ of the material by the equation R = ρL/A, where ρ is the material resistivity, L is the length of the material and A is the cross-sectional area of the material.
To calculate the resistance R of a wire made of a material with resistivity of 3.2x10⁻⁸Ω.m, the length of the wire is 2.5m and its diameter is 0.50mm.
We have to use the equation R = ρL/A but first we have to calculate the cross-sectional area of the wire which is a circle. So, the area of a circle is given by A = πr², with r = d/2. The cross-sectional area of the wire is A = πd²/4. Then:
R =[(3.2x10⁻⁸Ω.m)(2.5m)]/[π(0.5x10⁻³m)²/4]
R = 8x10⁻⁸Ω.m²/1.96x10⁻⁷m²
R = 0.407Ω