To solve this problem we will use the concepts related to gravitational acceleration and centripetal acceleration. The equality between these two forces that maintains the balance will allow to determine how the rigid body is consistent with a spherically symmetric mass distribution of constant density. Let's start with the gravitational acceleration of the Star, which is

Here



Mass inside the orbit in terms of Volume and Density is

Where,
V = Volume
Density
Now considering the volume of the star as a Sphere we have

Replacing at the previous equation we have,

Now replacing the mass at the gravitational acceleration formula we have that


For a rotating star, the centripetal acceleration is caused by this gravitational acceleration. So centripetal acceleration of the star is

At the same time the general expression for the centripetal acceleration is

Where
is the orbital velocity
Using this expression in the left hand side of the equation we have that



Considering the constant values we have that


As the orbital velocity is proportional to the orbital radius, it shows the rigid body rotation of stars near the galactic center.
So the rigid-body rotation near the galactic center is consistent with a spherically symmetric mass distribution of constant density
Answer:
mass of the object is 2.18 kg
Explanation:
Given
Force (F) = 8.5 N = 8.5 kg.m/
acceleration (a) = 3.9 m/
Mass (m) = ?
We know that the newton's second law of motion gives the relation between mass of ab object. force acted upon and the amount the object is accelerated. It is expressed in the form of an equation:
F = ma
mass, m = F/a
= 
= 2.18 kg
Answer:
The correct answer is option D.
Explanation:
Acoustic : A branch of physics which study the properties of sound.
Consonance: Combination of notes occurring simultaneously due to relationship between their respective frequencies.
Timbre: A characteristic of a musical note which makes it distinct from another wave which also have same pitch and intensity.
Dissonance :When combination of two notes are played simultaneously with lack of harmony in between them.
Hence, the correct answer is option D.
No, gravity does not have mass, it behaves like a particle without mass
Answer:
0.21 lunar month
Explanation:
the radius of moon = r₁
time period of the moon = T₁ = 1 lunar month
The radius of the satellite = 0.35 r₁
Time period of satellite
The relation between time period and radius

now,



T₂ = 0.21 lunar month
hence, the time period of revolution of satellite is equal to 0.21 lunar month