-- <u><em>Current is measured in amps.</em></u> (You can use any symbol you want to represent current, but the most common one is " I ", not "Δ".)
-- <u><em>The relationship between current, voltage, and resistance is mathematically defined by Ohm's Law. </em></u>
-- <u><em>Current is the flow of electrons through a circuit.</em></u>
-- (Ohm's Law is NOT mathematically represented by the equation V=I/R.) <u><em>It should be V = I · R</em></u> .
(When solving for Resistance in a circuit and both voltage and current are known values, the equation I =V*R is not true, and not the way to solve it.) <u><em>If the resistance is what you're looking for, then the equation to use is </em></u><u><em>R = V / I</em></u><u><em> . </em></u>
<em>-- </em><u><em>If the voltage in a circuit is increased, the current will also increase.</em></u>
Conductors allow<span> for </span>charge<span> transfer </span>through<span> the free movement of </span><span>electrons
</span>
Aluminum has an atomic number of 13, so it has 13 protons. In its natural state, it does not have a charge, so it has an equal amount of electrons, 13. The atomic mass of aluminum is approximately 27. Since protons and neutrons make up that mass, and each of the particles are around 1 atomic mass unit, if there are 13 protons, then there are 27-13 neutrons, or 14 neutrons. So the first answer choice is correct.
<h3>
Answer:</h3>
30.4 km/hr
<h3>
Explanation:</h3>
<u>We are given</u>;
- Speed in the first 2 hours as 25 km/hr
- Speed in the next 3 hours as 34 km/hr
We are required to determine the average velocity in km/hr
- To get the average velocity we divide total distance by total time.
- Thus, we need to determine the total distance
Distance = Speed × time
Distance covered in the first 2 hours;
= 25 km/hr × 2 hours
= 50 km
Distance in the next 3 hours
= 34 km/hr × 3 hours
= 102 km
Therefore, total distance = 50 km + 102 km
= 152 km
Total time = 2 hrs + 3 hrs
= 5 hours
Therefore;
Average speed = 152 km ÷ 5 hours
= 30.4 km/hr
Thus, the average speed is 30.4 km/hr
Answer:
Option C is correct.
The component of acceleration perpendicular to an object’s velocity tells us How the object’s direction changes.
Explanation:
This acceleration is called radial/tangential acceleration. It is the reason why a body moving in circular motion with constant velocity can be said to also be accelerating because its direction is continuously changing. The acceleration is usually directed towards the centre of the circular motion of the body or trying to throw the body off its circular motion path.