The Inertia is 22. 488 kg. m² and the speed just before it hits the ground is 6. 4 m/s
<h3>
How to determine the inertia</h3>
Using the formula:
I = 1/2 M₁R₁² + 1/2 M₂R₂²
Where I = Inertia
I = 1/2 * 0.810* (2. 60)² + 1/2 * 1. 58 * (5)²
I = 1/2 * 5. 476 + 1/2 * 39. 5
I = 2. 738 + 19. 75
I = 22. 488 kg. m²
To determine the block's speed, use the formula
v = ![\sqrt{2gh}](https://tex.z-dn.net/?f=%5Csqrt%7B2gh%7D)
v = ![\sqrt{2* 10 * 2. 10}](https://tex.z-dn.net/?f=%5Csqrt%7B2%2A%2010%20%2A%202.%2010%7D)
v = ![\sqrt{42}](https://tex.z-dn.net/?f=%5Csqrt%7B42%7D)
v = 6. 4 m/s
Therefore, the Inertia is 22. 488 kg. m² and the speed just before it hits the ground is 6. 4 m/s
Learn more about law of inertia here:
brainly.com/question/10454047
#SPJ1
Absolute zero is from the Kelvin scale.
Answer:
the magnitude of the force that the wire will experience = 1.8 N
Explanation:
The force on a current carrying wire placed in a magnetic field is :
F = Idl × B
where:
I = current flowing through the wire
dl = length of the wire
B = magnetic field
We can equally say that :
![|F| = IdlBsin \theta](https://tex.z-dn.net/?f=%7CF%7C%20%3D%20IdlBsin%20%5Ctheta)
where : sin θ is the angle at which the orientation from the magnetic field to the wire occurs = 30°
Then;
![|F| = B\ I \ L \ sin \theta](https://tex.z-dn.net/?f=%7CF%7C%20%3D%20B%5C%20I%20%5C%20L%20%5C%20sin%20%5Ctheta)
Given that:
L = 20 cm = 0.2 m
I = 6 A
B = 3 T
θ = 30°
Then:
F = 3 × 6 × 0.2 sin 30°
F = 1.8 N
Therefore, the magnitude of the force that the wire will experience = 1.8 N
Answers:
a) -2.54 m/s
b) -2351.25 J
Explanation:
This problem can be solved by the <u>Conservation of Momentum principle</u>, which establishes that the initial momentum
must be equal to the final momentum
:
(1)
Where:
(2)
(3)
is the mass of the first football player
is the velocity of the first football player (to the south)
is the mass of the second football player
is the velocity of the second football player (to the north)
is the final velocity of both football players
With this in mind, let's begin with the answers:
a) Velocity of the players just after the tackle
Substituting (2) and (3) in (1):
(4)
Isolating
:
(5)
(6)
(7) The negative sign indicates the direction of the final velocity, to the south
b) Decrease in kinetic energy of the 110kg player
The change in Kinetic energy
is defined as:
(8)
Simplifying:
(9)
(10)
Finally:
(10) Where the minus sign indicates the player's kinetic energy has decreased due to the perfectly inelastic collision