1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lidiya [134]
3 years ago
9

In a circuit, electrons flow from _____ terminal to the ____ terminal.​

Physics
1 answer:
malfutka [58]3 years ago
3 0

Answer:

phyiscal, work out

Explanation:

You might be interested in
1. A truck with a mass of 8, 000 kg is traveling at 26.8 m/s when it hits the brakes. A.)What is the momentum of the truck befor
NikAS [45]

Answer:

1. A.) The moment of the truck before it hits the brakes is 214,400 kg·m/s

B.) The force it takes to stop the truck is approximately 17,290.4 N

Explanation:

1. A.) The given parameters are;

The mass of the truck, m = 8,000 kg

The velocity of the truck when it hits the brakes, u = 26.8 m/s

Momentum = Mass × Velocity

The moment of the truck = The mass of the truck × The velocity of the truck

Therefore;

The moment of the truck before it hits the brakes = 8,000 kg × 26.8 m/s = 214,400 kg·m/s

B.) The amount of momentum lost when the truck comes to a stop = The initial momentum of the truck

The time it takes the truck to come to a complete stop, t = 12.4 s

The deceleration, "a" of the truck is given by the following kinematic equation of motion

v = u - a·t

Where;

v = The final velocity of the truck = 0 m/s

u = The initial velocity = 26.8 m/s

a = the deceleration of the truck

t = The time of deceleration of the truck = 12.4 s

Substituting the known values gives;

0 = 26.8 - a × 12.4

Therefore;

26.8 = a × 12.4

a = 26.8/12.4 ≈ 2.1613

The deceleration (negative acceleration) of the truck, a ≈ 2.1613 m/s²

Force = Mass × Acceleration

The force required to stop the truck = The mass pf the truck × The deceleration (negative acceleration) given to the truck

∴ The force it takes to stop the truck = 8,000 kg × 2.1613 m/s² ≈ 17,290.4 N.

8 0
3 years ago
Determine the minimum applied force p required to move wedge a to the right. the spring is compressed a distance of 175 mm. negl
BARSIC [14]
<span>b. The coefficient of static friction for all contacting surfaces is μs=0.35. neglect friction at the rollers.

</span>
6 0
3 years ago
How can accuracy be limited?
lozanna [386]

Answer:

accuracy refers to the deviation of a measurement from a standard or true value of the quantity being measured

5 0
3 years ago
Two 0.50 g spheres are charged equally and placed 2.5 cm apart. When released, they begin to accelerate at 170 m/s^2 .What is th
vitfil [10]

Answer:

q=7.65*10^{-8}C

Explanation:

Using Newton's second law, we calculate the magnitude of the electric force between the spheres:

F=ma\\F=0.5*10^{-3}kg(170\frac{m}{s^2})\\F=0.085N

The magnitude of the charge in both spheres is the same. So, we calculate the charge, using Coulomb's law:

F=\frac{kq^2}{d^2}\\q=\sqrt\frac{Fd^2}{k}\\q=\sqrt\frac{(0.085N)(2.5*10^{-2}m)^2}{8.99*10^9\frac{N\cdot m^2}{C^2}}\\q=7.65*10^{-8}C

8 0
3 years ago
Instead of moving back and forth, a conical pendulum moves in a circle at constant speed as its string traces out a cone (see fi
tigry1 [53]

Answer:

a

The  radial acceleration is  a_c  = 0.9574 m/s^2

b

The horizontal Tension is  T_x  = 0.3294 i  \ N

The vertical Tension is  T_y  =3.3712 j   \ N

Explanation:

The diagram illustrating this is shown on the first uploaded

From the question we are told that

   The length of the string is  L =  10.7 \ cm  =  0.107 \ m

     The mass of the bob is  m = 0.344 \  kg

     The angle made  by the string is  \theta  =  5.58^o

The centripetal force acting on the bob is mathematically represented as

         F  =  \frac{mv^2}{r}

Now From the diagram we see that this force is equivalent to

     F  =  Tsin \theta where T is the tension on the rope  and v is the linear velocity  

     So

          Tsin \theta  =   \frac{mv^2}{r}

Now the downward normal force acting on the bob is  mathematically represented as

          Tcos \theta = mg

So

       \frac{Tsin \ttheta }{Tcos \theta }  =  \frac{\frac{mv^2}{r} }{mg}

=>    tan \theta  =  \frac{v^2}{rg}

=>   g tan \theta  = \frac{v^2}{r}

The centripetal acceleration which the same as the radial acceleration  of the bob is mathematically represented as

      a_c  =  \frac{v^2}{r}

=>  a_c  = gtan \theta

substituting values

     a_c  =  9.8  *  tan (5.58)

     a_c  = 0.9574 m/s^2

The horizontal component is mathematically represented as

     T_x  = Tsin \theta = ma_c

substituting value

   T_x  = 0.344 *  0.9574

    T_x  = 0.3294 \ N

The vertical component of  tension is  

    T_y  =  T \ cos \theta  = mg

substituting value

     T_ y  =  0.344 * 9.8

      T_ y  = 3.2712 \ N

The vector representation of the T in term is of the tension on the horizontal and the tension on the vertical is  

         

       T  = T_x i  + T_y  j

substituting value  

      T  = [(0.3294) i  + (3.3712)j ] \  N

         

3 0
3 years ago
Other questions:
  • In a pulley system, a 5-newton weight is to be lifted 2 meters. The rope is pulled 10 meters. The input force is two newtons.
    12·2 answers
  • True or False: The absorption of alcohol can be slowed down by eating, but only water can reduce the BAL level.
    13·2 answers
  • A 2-kg block slides along a rough horizontal surface and slows to 10 m/s after traveling 20 m. If the kinetic coefficient of fri
    7·1 answer
  • What are electric motors?
    14·1 answer
  • Which is not a factor that affects the pressure of a gas in a closed container?
    12·1 answer
  • The spring-mounted 0.84-kg collar A oscillates along the horizontal rod, which is rotating at the constant angular rate rad/s. A
    14·1 answer
  • A car traveling at 10 m/s speeds up to 20 m/s in 3 seconds. determine the acceleration of the car
    8·2 answers
  • 2 Why don't all communication devices function off the same wavelength?
    7·1 answer
  • If a golf ball is dropped from the thirteenth floor of a building, ignoring air resistance, after falling for 7.00 seconds the s
    13·1 answer
  • 1. Discuss how we use trial and error, algorithms, heuristics, and insight to solve problems. For each concept, define the term
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!