Answer:
4 hydrogen atoms are needed to C5H8 to saturate it
Explanation: because C5H8 is an alkyne that contains a triple bond or alkene with 2 double bonds.
2 hydrogen atoms are needed to saturate one double bond and 4 hydrogen atoms are needed to fully Saturate a triple bond or two double bonds.
Answer:
2C₈H₁₈(g) + 25O₂(g)→16CO₂(g) + 18H₂O
Explanation:
To balance an equation, the moles of one element on one side of the equation should be the same as those on the other side of the equation. This is because (as a law of thermodynamics), in a chemical reaction, the matter is not destroyed nor created - atoms are only rearranged.
In a crystal, the particles are arranged in an orderly, repeating, three-dimensional pattern.
Option C
<u>Explanation:</u>
Solid crystal particles can be ions, molecules or atoms, based on the material kind. The three-dimensional solid crystal system is called the crystal lattice. The crystals are divided into general categories according to their shape.
The crystal is characterized by faces that intersect at specific angles characteristic of this material. Crystal is a material in which particles get arranged in an ordered, repeatable, three-dimensional way. Means, a solid contains an atomic patterns that is uniformly repeated in three dimensions.
Answer:
Shortest carbon-nitrogen bond = CH3CN, strongest carbon-nitrogen bond = CH3CN
Explanation:
Bond length is defined as the distance between the centers of two covalently bonded atoms, in this case; carbon and hydrogen.
The length of the bond is determined by the number of bonded electrons (the bond order).
The higher the bond order, the stronger the pull between the two atoms and the shorter the bond length.
Therefore, bond length increases in the following order: triple bond < double bond < single bond.
CH3CN - There's a triple bond between Carbon and Nitrogen
CH3NH2 - The bond between carbon and nitrogen is a single bond.
CH2NH - The bond between carbon and nitrogen is a double bond.
The specie with the shortest carbon-nitrogen bond is CH3CN (acetonitrile).
The species with the strongest carbon-nitrogen bond is also CH3CN (acetonitrile) because it contains a triple bond. A triple bond contains one sigma and 2 pi bonds. The energy required to break it is more when compared to the other bonds hence, it is the strongest bond.
A big stadium that has a positive charged marble in the center of the stadium.