Answer:
The maximum speed of sonic at the bottom of the hill is equal to 19.85m/s and the spring constant of the spring is equal to (497.4xmass of sonic) N/m
Energy approach has been used to sole the problem.
The points of interest for the analysis of the problem are point 1 the top of the hill and point 2 the bottom of the hill just before hitting the spring
The maximum velocity of sonic is independent of the his mass or the geometry. It is only depends on the vertical distance involved
Explanation:
The step by step solution to the problem can be found in the attachment below. The principle of energy conservation has been applied to solve the problem. This means that if energy disappears in one form it will appear in another.
As in this problem, the potential and kinetic energy at the top of the hill were converted to only kinetic energy at the bottom of the hill. This kinetic energy too got converted into elastic potential energy .
x = compression of the spring = 0.89
Answer:
The work required is -515,872.5 J
Explanation:
Work is defined in physics as the force that is applied to a body to move it from one point to another.
The total work W done on an object to move from one position A to another B is equal to the change in the kinetic energy of the object. That is, work is also defined as the change in the kinetic energy of an object.
Kinetic energy (Ec) depends on the mass and speed of the body. This energy is calculated by the expression:

where kinetic energy is measured in Joules (J), mass in kilograms (kg), and velocity in meters per second (m/s).
The work (W) of this force is equal to the difference between the final value and the initial value of the kinetic energy of the particle:


In this case:
- W=?
- m= 2,145 kg
- v2= 12

- v1= 25

Replacing:

W= -515,872.5 J
<u><em>The work required is -515,872.5 J</em></u>
The answer is a) Teres Major Muscle
Complete Question
The speed of a transverse wave on a string of length L and mass m under T is given by the formula

If the maximum tension in the simulation is 10.0 N, what is the linear mass density (m/L) of the string
Answer:

Explanation:
From the question we are told that
Speed of a transverse wave given by

Maximum Tension is 
Generally making
subject from the equation mathematically we have




Therefore the Linear mass in terms of Velocity is given by

Your answer would be A. You divide 96 by 16 to find the answer