Answer:
<em>D. refraction</em>
Explanation:
Refraction: Refraction is change in direction of light rays. Refraction occurs whenever light rays travels from a transparent medium to another transparent medium of different density. The abrupt change in direction at the surface of the surface of the two media is referred to as <em>refraction</em><em>.</em>
<em>Refraction occurs when light travels from air to glass or from air to liquid.</em>
<em>Laws Of Refraction:</em>
(i) The incident ray, the refracted ray and the normal, all at the point of incident lies in the same plane.
(ii) The ratio of the sine of the angle of incident to the sine of the angle of refraction is a constant for a given pair of media.
<em>Thus the right option is D. refraction</em>
Answer:
Time period,
Explanation:
Given that,
The quartz crystal used in an electric watch vibrates with a frequency of 32,768 Hz, f = 32768 Hz
We need to find the period of the crystal's motion. The relationship between the frequency and the time period is given by :
T is the time period of the crystal's motion.
Time period is given by :
So, the time period of the crystal's motion is . Hence, this is the required solution.
Answer:
Technique of comparing abundance ratio between radioactive isotopes to a reference isotope to determine the age of a material called radioactive dating. It determines the age by having a more abundance of isotopes in the cellular being.
Answer:
Einstein extended the rules of Newton for high speeds. For applications of mechanics at low speeds, Newtonian ideas are almost equal to reality. That is the reason we use Newtonian mechanics in practice at low speeds.
Explanation:
<em>But on a conceptual level, Einstein did prove Newtonian ideas quite wrong in some cases, e.g. the relativity of simultaneity. But again, in calculations, Newtonian ideas give pretty close to correct answer in low-speed regimes. So, the numerical validity of Newtonian laws in those regimes is something that no one can ever prove completely wrong - because they have been proven correct experimentally to a good approximation.</em>
3. is the answer, <span>Sodium needs to lose one electron, and chlorine needs to gain one electron. This is because Sodium's row always wants to give away an electron, while Chlorine's row wants to gain an electron.</span>