Answer:
Potential energy is transfer to kinetic energy,
If radio active substance is decayed.
TV announcer intend to mean "chnage of speed or velocity" by "High rate of speed" and in Physics domain it would mean "acceleration"
Explanation:
It is common to observe TV announcer saying certain events were occurring “with a high rate of speed”. By saying this they intend to mean that the event was rapid in its occurrence. It can also mean that the change in speed of the happening was very rapid/fast.
However, the same terms connote altogether a different expression in Physics domains. Speed is a scalar quantity with no direction. Hence most of the times speed mean velocity when the direction is also provided. “high rate of speed” would mean a change of velocity per unit time which is acceleration. Hence in Physics domain, the term would stand for acceleration.
Answer:
Option A.
Explanation:
In quantum physics <u>there is a law to relate the position and the momentum of the particle</u>, it says that if we know with precision where is a quantum particle, we can not know the momentum of this particle, in other words, the velocity of the particle. So, when we measure the velocity of the particle we find the correct value of the particle, but we can not determine with accuracy where is the particle. This law is known as the Heisenberg's uncertainty principle and, its expressed as follows:
<em>where Δx: is the position's uncertainty, Δp: is the momentum's uncertainty and h: is the Planck constant.</em>
Therefore, the correct answer is A: measuring the velocity of a tiny particle with an electromagnet has no effect on the velocity of the particle. It only affects the determination of the particle's position.
I hope it helps you!
Answer:
S = 11.025 m
Explanation:
Given,
The time taken by the pebble to hit the water surface is, t = 1.5 s
Acceleration due to gravity, g = 9.8 m/s²
Using the II equations of motion
S = ut + 1/2 gt²
Here u is the initial velocity of the pebble. Since it is free-fall, the initial velocity
u = 0
Therefore, the equation becomes
S = 1/2 gt²
Substituting the given values in the above equation
S = 0.5 x 9.8 x 1.5²
= 11.025 m
Hence, the distance from the edge of the well to the water's surface is, S = 11.025 m
Let the angle be Θ (theta)
Let the mass of the crate be m.
a) When the crate just begins to slip. At that moment the net force will be equal to zero and the static friction will be at the maximum vale.
Normal force (N) = mg CosΘ
μ (coefficient of static friction) = 0.29
Static friction = μN = μmg CosΘ
Now, along the ramp, the equation of net force will be:
mg SinΘ - μmg CosΘ = 0
mg SinΘ = μmg CosΘ
tan Θ = μ
tan Θ = 0.29
Θ = 16.17°
b) Let the acceleration be a.
Coefficient of kinetic friction = μ = 0.26
Now, the equation of net force will be:
mg sinΘ - μ mg CosΘ = ma
a = g SinΘ - μg CosΘ
Plugging the values
a = 9.8 × 0.278 - 0.26 × 9.8 × 0.96
a = 2.7244 - 2.44608
a = 0.278 m/s^2
Hence, the acceleration is 0.278 m/s^2