The answer is n= 6.
What is Balmer series?
The Balmer series is the portion of the emission spectrum of hydrogen that represents electron transitions from energy levels n > 2 to n = 2. These are four lines in the visible spectrum. They are also known as the Balmer lines. The four visible Balmer lines of hydrogen appear at 410 nm, 434 nm, 486 nm and 656 nm.
For the Balmer series, the final energy level is always n=2. So, the wavelengths 653.6, 486.1, 434.0, and 410.2 nm correspond to n=3, n=4, n=5, and n=6 respectively. Since the last wavelength, 410.2 nm, corresponds to n=6, the next wavelength should logically correspond to n=7.
To solve for the wavelength, calculate the individual energies, E2 and E7, using E=-hR/(n^2). Then, calculate the energy difference between E2 (which is the final) and E7 (which is the initial). Finally, use lamba=hc/E to get the wavelength.
To learn more about emission spectrum click on the link below:
brainly.com/question/24213957
#SPJ4
Answer:
Selenium is a semiconductor
Explanation:
Selenium is a semiconductor.
Elements in the column IV and VI of the periodic table are referred to as Semiconductor.
Selenium lies in the column VI along with Tellurium
Some other elements of the column IV are silicon, germanium, and tin
Eisenhower started the NASA project to develop technology for military application.
Answer:
The centripetal force on body 2 is 8 times of the centripetal force in body 1.
Explanation:
Body 1 has a mass m, and its moving in a circle with a radius r at a speed v. The centripetal force acting on it is given by :

Body 2 has a mass 2m and its moving in a circle of radius 4r at a speed 4v. The centripetal force on body 2 is :

So, the centripetal force on body 2 is 8 times of the centripetal force in body 1.