Answer:
P.E. = -0.449 J
Explanation:
Potential energy of a charge particle in any electrostatic field is defined as the amount of work done ( in negative ) to bring that charge particle from any position to a new position r.
Now Potential energy is defined by this formula,
P.E. = k q₁ q₂/ r
where P.E. is the potential energy.
k = 1/( 4πε₀) = 8.99 × 10⁹ C²/ ( Nm²)
q₁ = charge of one particle = +1.0μC
q₂ = charge of another particle = -5.0μC
r = distance = 0.1 m
Now , P.E. = 8.99 × 10⁹C²/ ( Nm²) * ( -5.0 × 10⁻⁶ C ) × ( 1 × 10⁻⁶ C ) / 0.1 m
P.E. = -0.449 J
Answer:
Approximate height of the building is 23213 meters.
Explanation:
Let the height of the building be represented by h.
0.02 radians = 0.02 × 
= 0.02 x (180/
)
0.02 radians = 1.146°
10.5 km = 10500 m
Applying the trigonometric function, we have;
Tan θ = 
So that,
Tan 1.146° = 
⇒ h = Tan 1.146° x 10500
= 2.21074 x 10500
= 23212.77
h = 23213 m
The approximate height of the building is 23213 m.
Answer:
Circuit one will have more current than circuit two
Explanation:
I am assuming that you have to see which circuit has the greater current in this case. Well, this is the perfect example of Ohm's Law, which states the following -
V = IR,
where V = voltage / potential difference, I = current, and R = resistance
If one circuit has twice the voltage and half the resistance of the second circuit, as voltage is directly proportional to the resistance -
2V = I( 1 / 2R ),
4V = IR,
I = 4V / R
Whereas in the second circuit -
V = IR,
I = V / R
As you can note, voltage is directly proportional to the current ( I ) as well as the resistance. The only difference between the two formulas I = 4V / R, and I = V / R is the difference in the voltage. With the voltage being 4 times greater in the first circuit, and current is 4 times greater in the first circuit as well.
<u><em>Hence, circuit one will have more current than circuit two</em></u>
<span>No sé una palabra que acaba de decir, ¿se puede decir en inglés por favor ???</span>