Answer:
b) the height the ball bounces
Explanation:
the control variable is the variable that you change yourself. since you change the height that the ball bounces from we know this is the answer
Answer:
A. The particles will begin to move enough
that they slide past each other.
Explanation:
When the plastic cup is heated, the Kinetic energy of its particles starts increasing. As the temperature rises, the kinetic energy keeps increasing. With the increase of K.E, the particles start moving faster and faster. When the temperature finally reaches the melting point, the K.E of the molecules is enough to break the bonds and slide past each other.
Answer:
(1) The maximum air temperature is 1383.002 K
(2) The rate of heat addition is 215.5 kW
Explanation:
T₁ = 17 + 273.15 = 290.15

T₂ = 290.15 × 3.17767 = 922.00139

Therefore,
T₃ = T₂×1.5 = 922.00139 × 1.5 = 1383.002 K
The maximum air temperature = T₃ = 1383.002 K
(2)


Therefore;


Q₁ = 1.005(1383.002 - 922.00139) = 463.306 kJ/jg
Heat rejected per kilogram is given by the following relation;
= 0.718×(511.859 - 290.15) = 159.187 kJ/kg
The efficiency is given by the following relation;

Where:
β = Cut off ratio
Plugging in the values, we get;

Therefore;


Heat supplied = 
Therefore, heat supplied = 215491.064 W
Heat supplied ≈ 215.5 kW
The rate of heat addition = 215.5 kW.
Suppose that the cyclist begins his journey from the rest from the top of a wedge with a slope of a degree above the horizontal.
At point A (where it starts its journey), the energy is:
Ea = m * g * h
In other words, energy is only potential.
At point B (located at the bottom of the wedge), the energy is:
Eb = (1/2) * (m) * (v ^ 2)
In other words, the energy is only kinetic.
For energy conservation we have:
Ea = Eb
That is, we have that all potential energy is transformed into kinetic energy.
Which means that the cyclist has less kinetic energy at point A because that's where he has more potential energy.
answer:
the cyclist has less kinetic energy at point A because that's where he has more potential energy.
Assuming the friction between the skaters and the ice is negligible, the magnitude of Porsha's acceleration is 2.8m/s².
Missing part of the question: determine the magnitude of Porsha's acceleration.
Given the data in the question;
- Mass of Porsha;

- Mass of Zorn;

- Force of Porsha push;

Magnitude of Porsha's acceleration; 
To determine the magnitude of Porsha's acceleration, we use Newton's second laws of motion:

Where m is the mass of the object and a is the acceleration.
We substitute the mass of Porsha and the force he used into the equation
Therefore, assuming the friction between the skaters and the ice is negligible, the magnitude of Porsha's acceleration is 2.8m/s².
Learn more: brainly.com/question/25125444