Answer:
This is due to impulse
Explanation:
Impulse equal to mΔv and FΔt
You can set these equal as mΔv = FΔt
When a boxer punches a tissue, it is like punching a cushion or a pillow. The time that the hit takes is much grater than if they were to hit something solid. In addition, the change in velocity of the boxer's arm would be much greater when they hit a punching bag. In this equation, the greater the time, the less force that is needed.
Answer:
b) q large and m small
Explanation:
q is large and m is small
We'll express it as :
q > m
As we know the formula:
F = Eq
And we also know that :
F = Bqv
F = 
Bqv = 
or Eq = 
Assume that you want a velocity selector that will allow particles of velocity v⃗ to pass straight through without deflection while also providing the best possible velocity resolution. You set the electric and magnetic fields to select the velocity v⃗ . To obtain the best possible velocity resolution (the narrowest distribution of velocities of the transmitted particles) you would want to use particles with q large and m small.
Answer:
A
Explanation:
because u are subtracting if this is from flvs that is what i did and it was right
C. Thick wire and cold temperature.
Explanation:
The resistance of a wire is given by: R = (ρL)/A
where ρ is the resistivity of the material, L is the length of the wire, A is the cross-sectional area of the wire.
From the formula, we see that the thicker the wire, the larger A, therefore the smaller the resistivity. so, a thick wire will have lower resistivity.
Moreover, the resistance of a wire increases with the temperature. In fact, high temperatures mean more motion of the atoms/electrons inside the wire, so more resistance to the flow of current through it. Therefore, colder temperature means lower resistance.
So, the correct option is thick wire and cold temperature.