More energy is released in nuclear reactions than in chemical reactions; this is because in nuclear reactions, mass is converted to energy. Nuclear energy released in nuclear fission and fusion is several 100 million times as large as an ordinary chemical reaction like the combustion process. The reason why nuclear energy release so much energy is because tremendous amounts of energy is released at one time. The nuclei in a nuclear reaction undergo a chain reaction, causing the neutrons to move extremely fast and release high amounts of energy.
Answer:

Explanation:
given,
frequency of tuba.f = 64 Hz
Speed of train approaching, v = 8.50 m/s
beat frequency = ?
using Doppler's effect formula

v_s is the velocity of the source
v is the speed of sound, v = 340 m/s
now,

f' = 65.64 Hz
now, beat frequency is equal to



hence, beat frequency is equal to 1.64 Hz
When a radioactive material is required to be placed in the body, the applications are brachytherapy and radioisotope imaging.
Radioactive materials are elements which has the ability to disintegrate by emitting radioactive substance or radiation. A good example of this is Cobalt-60, Titanium-99 etc.
Brachytherapy is a therapeutic process in which radioactive material is inserted into the body in close proximity to the region affected. The radioactive material emits radiations which are required to control the unwanted biological material in the body. A good application of this is the treatment of cancer using Cobalt-60.
Radioisotope imaging is a diagnostic process which is an imaging technique that may require placing a radioactive material in the body so as to trace or locate the affected part of the body. In this case, the material is used as a tracing element.
The applications that require the placing of radioactive materials in the body are brachytherapy and radioisotope imaging.
For more explanation, visit: brainly.com/question/9790340
Answer: 7.53 μC
Explanation: In order to explain this problem we have to use the gaussian law so we have:
∫E.dS=Qinside/εo we consider a gaussian surface inside the conducting spherical shell so E=0
Q inside= 0 = q+ Qinner surface=0
Q inner surface= 1.12μC so in the outer surface the charge is (8.65-1.12)μC=7.53μC