It is true that the iron recommendation for girls exceeds that of boys during adolescence.
During an adolescence, girls and boys require iron for a large growth spurt and the gain of adult phenotypes and biologic rhythms.
In this period of the life, iron recommendation increase in both girls and boys, because of the increase in lean body mass, the expansion of the total blood volume, the increase and start of menstruation at girls.
Iron is essential for oxygen transport, red blood cell creation, cognitive performance and immunological function.
The overall iron requirements for girls are up to twice as boys.
More about adolescence: brainly.com/question/13528489
#SPJ4
A - 1 CH4+ 1 O2 = 1 CO2+2 H2
b - 2 Al+3 Cl2 = 2 AlCl3
c - 1 CH2O+ 1 H2 = 1 CH3OH
*The ones that have the coefficient of 1 you can leave blank but if you have to put a number just put 1
Answer: pH = 2,897 , basic![[H+][OH-] = 10^{-14} ==> [H+] = \frac{10^{-14}}{7,89*10^{-12} } =\frac{1}{789} \\pH= -lg([H+]) = 2,897 \\pH basic](https://tex.z-dn.net/?f=%5BH%2B%5D%5BOH-%5D%20%3D%2010%5E%7B-14%7D%20%3D%3D%3E%20%5BH%2B%5D%20%3D%20%5Cfrac%7B10%5E%7B-14%7D%7D%7B7%2C89%2A10%5E%7B-12%7D%20%7D%20%3D%5Cfrac%7B1%7D%7B789%7D%20%5C%5CpH%3D%20-lg%28%5BH%2B%5D%29%20%3D%202%2C897%20%5C%5CpH%3C7%20%3D%3D%3E%20basic)
Explanation:
Answer:
No effect.
Explanation:
Hello,
In this case, considering the widely studied Le Chatelier's principle, we can realize that the factors affecting equilibrium are concentration, temperature and pressure and volume if the reaction is in gaseous phase and with non-zero change in the number of moles. In such a way, by adding a catalyst to given reaction will have no effect on the equilibrium direction.
Best regards.
In order to emit electrons, the cesium will have to absorb photons. Each photon will knock out one electron by transferring its energy to the electron. Therefore, by the principle of energy conservation, the energy of the removed electron will be equal to the energy of the incident photon. That energy is calculated using Planck's equation:
E = hf
E = 6.63 x 10⁻³⁴ * 1 x 10¹⁵
E = 6.63 x 10⁻¹⁹ Joules
The electron will have 6.63 x 10⁻¹⁹ Joules of kinetic energy