Answer:
Mercury<Venus<Earth<Mars<Jupiter< Saturn< Uranus<Neptune
Answer: Power is 200 W
Explanation: Power P = work done / time used.
P = W/t = mgh/t = 154 kg · 9.81 m/s²· 4 m / 30 s = 201 W
Answer: #1. Close the door when air conditioner is on #2. I would use only 1 paper towel when drying your hands #3. Recycle #4. use water bottles that are not to be plastic.
<em>So these are things that you can do to conserve the resources from the environment in your school! </em> So hopefully i had helped you answer this question! Have a Great Day!
Answer:
Check the explanation
Explanation:
When we have an object in periodic motion, the amplitude will be the maximum displacement from equilibrium. Take for example, when there’s a back and forth movement of a pendulum through its equilibrium point (straight down), then swings to a highest distance away from the center. This distance will be represented as the amplitude, A. The full range of the pendulum has a magnitude of 2A.
position = amplitude x sine function(angular frequency x time + phase difference)
x = A sin(ωt + ϕ)
x = displacement (m)
A = amplitude (m)
ω = angular frequency (radians/s)
t = time (s)
ϕ = phase shift (radians)
Kindly check the attached image below to see the step by step explanation to the question above.
Answer:
A. The applied force should be the same size as the friction force
Explanation:
Whenever we apply a force to an object it moves if the force applied to that object is unbalanced and there is no force or a lesser force to counter it. According to Newton's Second Law of motion, when an unbalanced force is applied to an object it produces an acceleration in the object in its own direction. So, the two forces acting on this box are the frictional force and the applied force in horizontal direction. In order to move the box at constant speed, the applied force must first, overcome the frictional force, so the object can start its motion. Since, the motion has constant velocity, it means no acceleration. So, the force must be balanced in order to avoid acceleration as a consequence of Newton's Second Law of motion. Therefore, the correction in this case will be:
<u>A. The applied force should be the same size as the friction force</u>