Answer:
Thermal energy of an isolated system changes with time If the mechanical energy of that system is constant according to the first law of thermodynamics, which states that thermal energy of an isolated system can still change as long as the total energy of that system does not change.
Explanation:
Answer:

Explanation:
The weight of an object on Earth is given by
, so we can calculate its mass by doing
, which for our values is:

<em>Nothing is being asked</em> about Io but if one wanted to know the weight <em>W'</em> of the watermelon there one just have to do:

Answer:



Explanation:
Notice that this is a circuit with resistors R1 and R2 in parallel, connected to resistor R3 in series. It is what is called a parallel-series combination.
So we first find the equivalent resistance for the two resistors in parallel:

By knowing this, we can estimate the total current through the circuit,:

So approximately 0.17 amps
and therefore, we can estimate the voltage drop (V3) in R3 uisng Ohm's law:

So now we know that the potential drop across the parellel resistors must be:
10 V - 4.28 V = 5.72 V
and with this info, we can calculate the current through R1 using Ohm's Law:

<span>D. Convection occurs when heated particles of a material flow toward areas having less thermal energy. This movement of particles can only occur in gases and liquids, not solids.</span>