Answer:
1.53seconds
Explanation:
Using first equation of motion :
V=U + at
Where final velocity (V) =+8.3m/s
Initial velocity (U) =+4.4m/s
Acceleration (a) = 0.65m/s^2
time(s)=?
V=U + at
+8.3^2 = +4.4 + 0.65 * t
Making t the subject of the formula :
Therefore, t= ( +8.3 - 4.4)/0.65 = 1.53seconds
Answer:
Explanation:
25 cycles/s (5 s) = 125 dots
Tape does Repetitious motion.
It might possibly be harmonic motion, but we do not have enough information to say for certain.
To solve this problem we will apply the concept related to the heat transferred to a body to reach a certain temperature. This concept is shaped by the energy ratio of a body which is the product of the mass, its specific heat and the change in temperature. For the specific case, it will be the sum of the heat transferred to the Water, the Aluminum and the loss due to latency due to vaporization in the water. That is to say,

Here,
= Mass of Aluminum
= Specific Heat of Aluminum
= Specific Heat of Water
Mass of water
Latent of Vaporization
Replacing,

Converting,


Therefore is required 440.409kCal
Answer:
You will need 450 cells (3 cm each) to meet the voltage/current requirement.
The panel must be 3 cells in one side, by 150 cell in another side. 1350 cm^2 or 0.135 m^2. They must be connected 3 in row in parallel (to add current), then each of the former group must be connected in series to meet the voltage, so it would be 150 rows of connected in series.
The panel can be optimized using a voltage inverter, to convert current to voltage. In this way, less cells can be used achieving the same output specs.
Explanation:
To meet the voltage:
120 [v] required voltage
0.8 [v] voltage of each cell
![\frac{120}{0.8} =150[v]\\](https://tex.z-dn.net/?f=%5Cfrac%7B120%7D%7B0.8%7D%20%3D150%5Bv%5D%5C%5C)
So we need 150 cells in series for the voltage.
To meet the current
1.0 [A] Required current
350[mA]=0.35[A] cell current
1/0.35=3 cell So we need 3 cells in parallel to add the currents and meet the requirement.
See the attached figure
Answer:
The capacitance is cut in half.
Explanation:
The capacitance of a plate capacitor is directly proportional to the area A of the plates and inversely proportional to the distance between the plates d. So if the distance was doubled we should expect that the capacitance would be cut in half. That can be verified by the following equation that is used to compute the capacitance in such cases:
C = (\epsilon)*(A/d)
Where \epsilon is a constant that represents the characteristics for the insulator between the plates. A is the area of the plates and d is the distance between them. When we double d we have a new capacitance, given by:
C_new = (\epsilon)*(A/2d)
C_new = (1/2)*[(\epsilon)*(A/d)]
Since C = (\epsilon)*(A/d)] we have:
C_new = (1/2)*C