1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Debora [2.8K]
3 years ago
10

Which of the following is a device

Physics
2 answers:
marusya05 [52]3 years ago
7 0

Answer:

spectrograph

hope it is helpful to you

HACTEHA [7]3 years ago
7 0

Answer: spectograph

Explanation:

You might be interested in
A 1.005 m chain consists of small spherical beads, each with a mass of 1.00 g and a diameter of 5.00 mm, threaded on an elastic
LUCKY_DIMON [66]

Answer:

1) μ = 1.33 10⁻³ kg / m , F = - 14,256 ,  2) v= 103.53 m/s, 3)  f = 138.04 Hz , 4)  1, 25, 50, 76, 101   , 5) A = 0.00869 m , 6)  # _position = (# _account-1) (1.5m / 100 accounts)

Explanation:

1) Linear density is the mass per unit length

     μ = m / L

     μ = 2 1 10⁻³ / 1,5

     μ = 1.33 10⁻³ kg / m

this is the density when the chain is stretched, which is when the pulse occurs

we can find the tension with

     F = - k (x₁-x₀)

where k is the spring constant

     F = - 28.8 (1.5 -1.005)

     F = - 14.256 N

the negative sign indicates that the force is restorative

2) the pulse speed is

      v = √ T /μ

      v = √ 14,256 / 1,33 10⁻³

      v = 103.53 m / s

3) If standing waves are formed with fixed points at the ends and 4 antinodes, the wavelength is

          2 λ = L

            λ = L / 2

wave speed is related to frequency and wavelength

           v = λ f

            f = v / λ

            f = v 2 / L

            f = 103.53 2 / 1.5

            f = 138.04 Hz

4) The marbles are numbered, the marbles that remain motionless are

   the first (1) and the last (101)

Let's look for the distance to each node, for this we must observe that in each wavelength there is a node at the beginning, one in the center and one at the end, therefore the nodes are in

         #_node = m λ / 2 = m L / 4

        #_node     position (m)

         1                  1.5 / 4 = 0.375

         2             2 1.5 / 4 = 0.75

         3             3 1.5 / 4 = 1,125

         

Since there are 101 marbles in the initial length, this number does not change with increasing length, so there is 101 marble in 1.5 m. Let's find with a direct proportion rule the number of marbles at these points with nodes

        #_canica = 0.375 m (101 marble / 1.5 m) 0.375 67.33

        # _canica = 25

        #_canica = 0.75 67.33

        #_canica = 50

        # _canica = 1,125 67.33

        #canica = 75.7 = 76

in short the number of the fixed marbles is

      1, 25, 50, 76, 101 canic

5) The movement of the account is oscillatory at this point, which is why it is described by

          y = A cos wt

          v_{y}= -A w sin wt

the speed is maximum for when the breast is worth ±1

          v_{y} = Aw

           A = v_{y} / w

angular velocity related to frequency

         w = 2π f

          A = v_{y} / 2πf

          A = 7.54 / (2π 138.04)

          A = 0.00869 m

6) for the position of each account we can use a direct proportion rule

      in total there are 100 accounts distributed in the 1.50 m distance, the #_account is in the # _position. Note that it starts to be numbered 1, so this number must be subtracted from the index of the amount

       # _position = (# _account-1) (1.5m / 100 accounts)

#_canic position(m)

   1          0

   2         0.015

   3         0.045

   4         0.06

7) the wave has a constant velocity, but every wave is oscillated perpendicular to this velocity, with an oscillatory movement described by the expression

         y = Acos wt

the maximum speed is

         v_{y} = -Aw sin wt

speed is maximum when the sine is ±1

         v_{y} = A w

to calculate the amplitude of the count we use that for a standing wave

         y = 2Asin kx

          y / A = 2 sin (2π /λ x)

the wavelength is

 λ = 0.75 m

the position is

x (30) = 29 1.5 / 100 = 0.435  m

          y (30) A = 2 sin (2pi 0.435 / 0.75)

          y (30) / A = 0.96 m

8 0
3 years ago
Can someone please answer this pleaseee!!!!!!!!
Andru [333]

Answer:

With a slower speed-perhaps 5 cm/s answer is c

5 0
3 years ago
Which of the following will change if you apply unbalanced forces to an object?
bearhunter [10]
The velocity of the object will change, thus changing its position.
5 0
2 years ago
Una fuerza F de 200 lb actúa a lo largo de AB, sobre la rampa mostrada. fuerza de F respecto del eje OC. Calcule el momento de f
ruslelena [56]

Answer:

Moc = -613.25 [lb*in]

Explanation:

Este problema se puede resolver mediante la mecánica vectorial, es decir se realizara un analisis de vectores.

Primero se calculara el momento de la fuerza F_AB con respecto al punto O, debemos recordar que el momento con respecto a un punto se define como el producto cruz de la distancia por la fuerza.

M_{o}=r_{A/O} * F_{AB} (producto cruz)

Necesitamos identificar los puntos:

O (0,0,0) [in]

A (12,0,0) [in]

B (0, 24,8) [in]

C (12,24,0) [in]

r_{A/O}=(12,0,0) - (0,0,0)\\r_{A/O} = 12 i + 0j+0k [in]\\AB = (0,24,8) - (12,0,0)\\AB = -12i+24j+8k [in]\\[LAB]=\frac{-12i+24j+8k}{\sqrt{(12)^{2} +(24)^{2} +(8)^{2} } }\\ LAB=-\frac{3}{7} i+\frac{6}{7}j+\frac{2}{7}k

El ultimo vector calculado corresponde al vector unitario (magnitud = 1) de AB. El vector fuerza corresponderá al producto del vector unitario por la magnitud de la fuerza = 200 [lb].

F_{AB}=-\frac{600}{7} i +\frac{1200}{7}j+\frac{400}{7} k [Lb]

De esta manera realizando el producto cruz tenemos

M_{O}=r_{A/O} * F_{AB}

M_{O}=0i-685.7j+2057.1k [Lb*in]

Para calcular el momento con respecto a la diagonal OC, necesitamos el vector unitario de esta diagonal.

OC = (12,24,0)-(0,0,0)\\OC= 12i+24j+0k[Lb]\\LOC = \frac{12i+24j+0k}{\sqrt{(12)^{2} +(24)^{2} +(0)^{2} } } \\LOC=\frac{12}{\sqrt{720}}i+\frac{24}{\sqrt{720}}j  +0k

El vector con respecto al eje OC, es igual al producto punto del momento en el punto O por el vector unitario LOC

M_{OC}=L_{OC}*M_{O}\\M_{OC}=(\frac{12}{\sqrt{720}}i +\frac{24}{\sqrt{720}} j+0k )* (0i-685.7j+2057.1k)\\M_{OC}= -613.32[Lb*in]

7 0
2 years ago
__________ includes the objects speed and direction of motion.
777dan777 [17]
Rate would be the answer
3 0
3 years ago
Other questions:
  • To calculate the heat needed to boil a pot of water at 100C, what do you need to know? A. the mass and latent heat of fusion B.
    9·2 answers
  • How much work does the electric field do in moving a proton from a point with a potential of +130 V
    9·1 answer
  • A vertical spring stretches 4.0 cm when a 12-g object is hung from it. The object is replaced with a block of mass 28 g that osc
    10·1 answer
  • What is the total number of pounds of carbon dioxide that 2 trees remove from the air each<br> year?
    14·2 answers
  • An object has a position given by the radius vector r = [2.0 m + (3.00 m/s)t](i)+ [3.0 m - (2.00 m/s^2)t^2](j). Here (i) and (j)
    10·1 answer
  • Binding energy is the energy needed to
    6·1 answer
  • An egg is Free Falling Down from a nest in a tree (neglect air resistance)​
    11·1 answer
  • True or false your vocal cords act like a guitar string when it comes to sound
    9·2 answers
  • What’s the atomic number for magnesium
    13·1 answer
  • A mother (mass 60.0 kg) skates across an ice rink with negligible friction toward her child (mass 20.0 kg), who is standing stil
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!