You would want to increase the temperature.
True, the measurement shown is a derived unit.
Answer:
3600 kg
Explanation:
From the question,
Density = Mass/Volume
D = M/V.............................. Equation 1
Where D = Density of the substance, M = mass of the substance, V = Volume of the subtance.
Make M the subject of the equation
M = D×V ............................ Equation 2
Given: D = 1200 kg/m³, V = 3 m³.
Substitute these values into equation 2
M = 1200×3
M = 3600 kg.
Hence the mass of the substance is 3600 kg
Answer:
The answer to your question is:
Explanation:
Data
mass = 4.33 kg
E = 41.7 J
v = ?
Formula
Ke = (1/2)mv²
Clear v from the equation
v = √2ke/m
Substitution
v = √2(41.7)/4.33
v = 19.26 m/s Result
Answer:
The maximum speed of sonic at the bottom of the hill is equal to 19.85m/s and the spring constant of the spring is equal to (497.4xmass of sonic) N/m
Energy approach has been used to sole the problem.
The points of interest for the analysis of the problem are point 1 the top of the hill and point 2 the bottom of the hill just before hitting the spring
The maximum velocity of sonic is independent of the his mass or the geometry. It is only depends on the vertical distance involved
Explanation:
The step by step solution to the problem can be found in the attachment below. The principle of energy conservation has been applied to solve the problem. This means that if energy disappears in one form it will appear in another.
As in this problem, the potential and kinetic energy at the top of the hill were converted to only kinetic energy at the bottom of the hill. This kinetic energy too got converted into elastic potential energy .
x = compression of the spring = 0.89