During the phase transition vapour --> liquid water, the temperature of the water does not change; the molecules of water release heat and the amounf of heat released is equal to
where
m is the mass of the water
is the latent heat of evaporation.
For water, the latent heat of evaporation is
, while the mass of the water is
so, the amount of heat released in the process is
Answer:
<em>His angular velocity will increase.</em>
Explanation:
According to the conservation of rotational momentum, the initial angular momentum of a system must be equal to the final angular momentum of the system.
The angular momentum of a system = 'ω'
where
' is the initial rotational inertia
ω' is the initial angular velocity
the rotational inertia =
where m is the mass of the system
and r' is the initial radius of rotation
Note that the professor does not change his position about the axis of rotation, so we are working relative to the dumbbells.
we can see that with the mass of the dumbbells remaining constant, if we reduce the radius of rotation of the dumbbells to r, the rotational inertia will reduce to .
From
'ω' = ω
since is now reduced, ω will be greater than ω'
therefore, the angular velocity increases.
<u>Answer</u>
5.the stage before a star becomes a main sequence star
<u>Explanation</u>
A protostar is a small star that is still gathering its masses. When it forms enough masses it make a parent molecular cloud.
This been the case, from the choices given, the correct statement about a protostar is;
5.the stage before a star becomes a main sequence star
the halogens is group 17,,