Answer:
The wave speed of the sound wave is 900
.
Explanation:
Wavelength is the minimum distance between two successive points on the wave that are in the same state of vibration. It is expressed in units of length (m).
Frequency is the number of vibrations that occur in a unit of time. Its unit is s⁻¹ or hertz (Hz).
The propagation velocity is the speed with which the wave propagates in the medium, that is, it is the magnitude that measures the speed at which the wave disturbance propagates along its displacement. Relate the wavelength (λ) and the frequency (f) inversely proportional using the following equation: v = f * λ.
In this case:
Replacing:
v= 500 Hz* 1.8 m
v= 900 
<u><em>The wave speed of the sound wave is 900 </em></u>
<u><em>.</em></u>
Answer:
25000 V
Explanation:
The formula for potential is
V = Kq/r
Potential at B due to the charge placed at origin O
V1 = K q / OB

V1 = 10000 V
Potential at B due to the charge placed at A
V2 = K q / AB

V2 = 15000 V
Total potential at B
V = V1 + V2 = 10000 + 15000 = 25000 V
Answer:
the correct answer is A, North
Explanation:
The forces are vectors so they must be added vectorially.
The magnitude of the forces is the same, but not their direction, which is why they are different.
Analyze the situation presented
We have a force towards the North and another towards the South with the same magnitude, therefore these cancel each other out
We have a force towards the Northeast and another towards the Northwest, these can be decomposed into parts, one towards the North and another on the East-West axis, this last component is canceled, but the component towards the North is added.
In summary we see that the body accelerates towards the North
the correct answer is A
Answer:
C. Surface area
Explanation:
The rate of chemical reaction depends on various factors such as:
- concentration and pressure
- nature of reactants
- temperature
- surface area
- presence of catalyst, etc.
Effect of surface area of reactants: the rate of a chemical reaction can be increased by increasing the the area of contact of the reacting substances. This is especially important when one or more of the reactants are solids., because only the particles of the solid that are exposed are able to take part in the reaction at each instant of time. Therefore, the greater the surface area of the solid reactant particles the faster the reaction.
The surface area of solid reactants can be increased by grinding or pelletizing, thus allowing for a greater contact between the reacting particles,
The instance in which one of the solid reactants was treated in a coffee grinder before adding to the reaction container is one way of increasing the surface area of a reactant.