A person who sprints for 45 seconds will obtain most of his or her energy from muscle glycogen.
<h3>Energy metabolism during sprints</h3>
During sprinting or highly intense exercise activities, blood glucose is rapidly consumed. Rapid consumption of blood glucose may breach the blood glucose set point.
In order to maintain blood glucose homeostasis, glucose stored as glycogen in the muscles is converted back to glucose. The glucose is then utilized to produce ATP for the sprint or exercise.
Thus, a person who sprints for 45 seconds will have to obtain most of their energy from the glycogen stored in the muscles.
More on glucose metabolism can be found here: brainly.com/question/4707439
#SPJ1
A) muscle triglycerides.
B) plasma free fatty acids.
C) blood glucose.
D) muscle glycogen.
Explanation:
Photosynthesis is a process taking place in the green plants which are involved in the formation of the glucose molecule using Carbon dioxide and water in the presence of sunlight.
The process of photosynthesis takes place in two phases:
1. Light-dependent phase
2. Light independent phase
<u>Light-dependent phase
</u>
Light-dependent phase takes place in the thylakoid membrane where the Photosystem I and II are present.
The photosystem II absorbs the sunlight of 680 nm wavelength which excites the electron of the chlorophyll. The electron moves in the photosystem and through the reaction center-exit the photosystem and enters the electron transport chain.
The electron is then transferred via the electron carriers like plastoquinone, cytochrome, and plastocyanin and is transferred to photosystem I which absorbs the light at 700 nm. From here the electron is taken by ferrodoxin and form NADH.
The electron then reaches the ATP synthase and forms the ATP molecules thus ATP and NADPH are formed in the reaction but the loss of electron in chlorophyll is fulfilled by the water molecule which on hydrolysis provides the electrons and stabilize the structure.
<u> Light independent phase
</u>
The phase during which the Rubisco enzyme binds with the carbon dioxide and forms 3-PGA. This 3 PGA is then reduced to G3P which requires the 6 ATP molecules. The G3P molecule then forms 1 molecule of glucose and the Rubp is again regenerated.
Answer:
DNA is made up of molecules called nucleotides. Each nucleotide contains a phosphate group, a sugar group and a nitrogen base. The four types of nitrogen bases are adenine (A), thymine (T), guanine (G) and cytosine (C). The order of these bases is what determines DNA's instructions, or genetic code.
Explanation:
The lac repressor protein is bound to the operator region of the lac operon when there is no lactose in the medium. When introduced in lactose, it binds to an allosteric site on the repressor causing its to change conformation and release from the operator. This allows the polymerase that is bound to the promoter region to proceed transcription of the lac operon genes (LacZ, Lac A, and Lac Y). Translation of these genes forms enzymes that enable the organism to break down lactose for energy.
The answer will be C decreases