To solve this problem we will apply the concepts related to the conservation of momentum. Momentum is defined as the product between mass and velocity of each body. And its conservation as the equality between the initial and final momentum. Mathematically described as

Here
= Mass of big fish
= Mass of small fish
= Velocity of big fish
= Velocity of small fish
= Final Velocity
The big fish eats small fish and the final velocity is zero. Rearrange the equation for the initial velocity of small fish we have


Replacing we have,


The negative sign indicates that the small fish is swimming in the direction opposite to that of the big fish.
Therefore the speed of the small fish is 10m/s
437x9
is ur answer. I'm not sure tho hope it helps
Answer:
1.991 × 10^(8) N/m²
Explanation:
We are told that its volume increases by 9.05%.
Thus; (ΔV/V_o) = 9.05% = 0.0905
To find the force per unit area which is also pressure, we will use bulk modulus formula;
B = Δp(V_o/ΔV)
Making Δp the subject gives;
Δp = B(ΔV/V_o)
Now, B is bulk modulus of water with a value of 2.2 × 10^(9) N/m²
Thus;
Δp = 2.2 × 10^(9)[0.0905]
Δp = 1.991 × 10^(8) N/m²
Answer:
The magnetic field is strongest at the center and weakest between the two poles just outside the bar magnet. The magnetic field lines are densest at the center and least dense between the two poles just outside the bar magnet.
Explanation:
Answer:
I believe the answer is It increases