Answer:
A. endothermic.
A. Yes, absorbed.
Explanation:
Let's consider the following thermochemical equation.
2 HgO(s) ⇒ 2 Hg(l) + O₂(g) ΔH = 182 kJ
The enthalpy of the reaction is positive (ΔH > 0), which means that the reaction is endothermic.
182 kJ are absorbed when 2 moles of HgO react (molar mass 216.59 g/mol). The heat absorbed when 72.8 g of HgO react is:

[CO] = 1 mol / 2L = 0.5 M
[
According to the equation:
and by using the ICE table:
CO(g) + H2O(g) ↔ CO2(g) + H2(g)
initial 0.5 0.5 0 0
change -X -X +X +X
Equ (0.5-X) (0.5-X) X X
when Kc = X^2 * (0.5-X)^2
by substitution:
1.845 = X^2 * (0.5-X)^2 by solving for X
∴X = 0.26
∴ [CO2] = X = 0.26
Answer:
Infectious diseases are commonly transmitted through direct person-to-person contact.
The main four pathogens are virus, bacteria, protists and fungi.
Bacteria, fungi and protists can reproduce wherever the conditions are warm, with plenty of moisture, nutrients, and space. Viruses can only reproduce by invading living cells.
Carbon monoxide is dangerous because it binds with hemoglobin in the blood.
Hemoglobin is made up of proteins that bind to iron atoms. The structure of the protein facilitates loose binding of oxygen. On other hand, Carbon monoxide binds very strongly to the iron in hemoglobin. Once carbon monoxide is bonded to hemoglobin, it is very difficult to release. This, eventually results in blood losing it its ability to transport oxygen. Hence, the person will suffocate. Due to this, CO is dangerous.
0.398=mol/4.57L. mol= 1.818. 1.818*3=5.456. 5.456/(4.57L)=1.19 M