4.0 is gonna be your answer
Answer:
x = 240 m
Explanation:
This is a kinematics exercise
Let's fix our frame of reference on car A
x = x₀ₐ+ v₀ₐ t + ½ aₐ t²
the initial position of car a is zero
x = 0 + v₀ₐ t + ½ 0.8 t²
for car B
x = x_{ob} + v_{ob} t - ½ a_b t²
car B's starting position is 30 m
x = 30 + v_{ob} t - ½ 0.4 t²
at the point where they meet, the position of the two vehicles is the same
0 + v₀ₐ t + ½ 0.8 t² = 30 + v_{ob} t - ½ 0.4 t²
let's reduce the speeds to the SI system
v₀ₐ = 14.4 km / h (1000 m / 1 km) (1h / 3600s) = 4 m / s
v_{ob} = 23.4 km / h = 6.5 m / s
4 t + 0.4 t² = 30 + 6.5 t - 0.2 t²
0.2 t² - 2.5 t - 30 = 0
t² - 12.5 t - 150 = 0
we solve the quadratic equation
t =
t =
t₁ = 20 s
t₂ = -7.5 s
time must be a positive quantity so the correct result is t = 20 s
let's look for the distance
x = 4 t + ½ 0.8 t²
x = 4 20 + ½ 0.8 20²
x = 240 m
Answer:bruh Brandon I’m trying to get the answer I look it up on google and I see this I’m dead see you in 4th hour
Explanation:
Answer:
The solution(s) are in order with respect to the attachments
Joules ; 5. Adding the same amount of heat to two different objects will produce the same increase in temperature ; 2. Same speed in both ; 2. A
Explanation:
Diagram 1 ( Liquid Nitrogen ) : So as you can see, we want our units in Joules here, and can therefore multiply the mass of gaseous nitrogen and the latent heat of liquid nitrogen, to cancel the units kg, and receive our solution - in terms of Joules. Let's do it.
q ( energy removed ) = mass of nitrogen
latent heat of liquid nitrogen,
q = 1.3 kg
2.01
10⁵ J / kg =
=
=
=
Joules =
kiloJoules = 2.613
10⁵Joules is the energy that must be removed
Diagram 2 : The same amount of heat does not necessarily mean the same increase in temperature for two different objects. The increase in temperature depends on the specific heat capacity of the substance. Therefore your solution is 5 ) Adding the same amount of heat to two different objects will produce the same increase in temperature.
Diagram 3 : The temperatures in both glasses are the same, and hence the molecules have the same average speed. Therefore your solution is 2 ) Same speed in both.
Diagram 4 : Glass A has more water molecules, and hence has more thermal energy. Your solution is 2 ) A.
The motorist travels (a) 58 km/h and (b) ~16.1 m/sec