Answer:
Every value of b>4.47 and b<-4.47 will cause the quadratic equation
to have two real number solution.
Step-by-step explanation:
We have the quadratic function
, and we have to find the value of b.
A <em>quadratic function</em> is
, a quadratic function usually has two real solutions. You can find that solutions using Bhaskara's Formula:
![x_1=\frac{-b+\sqrt{b^2-4.a.c} }{2.a}](https://tex.z-dn.net/?f=x_1%3D%5Cfrac%7B-b%2B%5Csqrt%7Bb%5E2-4.a.c%7D%20%7D%7B2.a%7D)
![x_2=\frac{-b-\sqrt{b^2-4.a.c} }{2.a}](https://tex.z-dn.net/?f=x_2%3D%5Cfrac%7B-b-%5Csqrt%7Bb%5E2-4.a.c%7D%20%7D%7B2.a%7D)
and
are real solutions of the quadratic equation if and only if:
![b^2-4.a.c >0](https://tex.z-dn.net/?f=b%5E2-4.a.c%20%3E0)
If
the quadratic equation doesn't have real solutions.
If
the quadratic equation has only one solution.
Then in this case to have two real number solutions: ![b^2-4.a.c >0](https://tex.z-dn.net/?f=b%5E2-4.a.c%20%3E0)
We have
, where a=1, b, c=5
Then,
![b^2-4.a.c >0\\b^2-4.1.5>0\\b^2-20>0](https://tex.z-dn.net/?f=b%5E2-4.a.c%20%3E0%5C%5Cb%5E2-4.1.5%3E0%5C%5Cb%5E2-20%3E0)
Adding 20 in both sides of the equation:
![b^2-20>0\\b^2-20+20>20\\b^2>20\\b>\sqrt{20}](https://tex.z-dn.net/?f=b%5E2-20%3E0%5C%5Cb%5E2-20%2B20%3E20%5C%5Cb%5E2%3E20%5C%5Cb%3E%5Csqrt%7B20%7D)
Which is the same as: ![b](https://tex.z-dn.net/?f=b%3C-%5Csqrt%7B20%7D)
Then, ![b>\sqrt{20}\\b>4.47\\b](https://tex.z-dn.net/?f=b%3E%5Csqrt%7B20%7D%5C%5Cb%3E4.47%5C%5Cb%3C-%5Csqrt%7B20%7D%5C%5Cb%3C-4.47)
Then every value of b>4.47 and b<-4.47 will cause the quadratic equation
to have two real number solution.
For example b=-5 or b=5.
If you replace with b=-5 in ![b^2-4.a.c >0](https://tex.z-dn.net/?f=b%5E2-4.a.c%20%3E0)
![b^2-4.a.c >0\\(-5)^2-4.1.5>0\\25-20>0\\5>0](https://tex.z-dn.net/?f=b%5E2-4.a.c%20%3E0%5C%5C%28-5%29%5E2-4.1.5%3E0%5C%5C25-20%3E0%5C%5C5%3E0)
Then the quadratic function has two real number solutions.