1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ElenaW [278]
3 years ago
14

Multiply. ​3 8ths ⋅ 4 5ths express your answer in simplest form.

Mathematics
2 answers:
Ghella [55]3 years ago
5 0

Answer:

3/10

Step-by-step explanation:

12/40 reduces to 3/10

goblinko [34]3 years ago
3 0

Answer:

3/10

Step-by-step explanation:

<u>3*4= 12</u>

<u>8*5=40</u>

12/40= 3/10

<u />

You might be interested in
Find the area of a trapezoid Q Is 4 cm S is 7 cm are is 3 cm
a_sh-v [17]

Answer:67

Step-by-step explanation:

7 0
2 years ago
Given X(4, -7). What are the coordinates of X" if
Vika [28.1K]
<h3>Answer:</h3>

B. (0, 9)

<h3>Step-by-step explanation:</h3>

Reflection across x=a is represented by the transformation ...

... (x, y) ⇒(2a-x, y)

Reflection across y=b is represented by the transformation ...

... (x, y) ⇒ (x, 2b-y)

The double reflection, across x=2, y=1 will result in the transformation ...

... (x, y) ⇒ (2·2-x, y) ⇒ (4-x, 2·1-y) ⇒ (4-x, 2-y)

For (x, y) = X(4, -7), the transformed point is ...

... X''(4-4, 2-(-7)) = X''(0, 9)

6 0
3 years ago
What is the absolute value of a number?
Nadusha1986 [10]

Answer:

All of the whole numbers

Step-by-step explanation:

absolute value" means to remove any negative sign in front of a number, and to think of all numbers as positive

4 0
3 years ago
Read 2 more answers
A group of 30 students from your school is part of the audience for a TV game show. The total number of people in the audience i
s344n2d4d5 [400]

Answer:

5.3%

Step-by-step explanation:

The final probability is calculated by means of the quotient of the specific combinations and the total of total combinations

Let's start with the specific ones,

First the number of combinations of 4 of the 30 students getting a spot, i.e .:

A combinations are equal to:

nCx = n! / x! * (n-x)!

Replacing:

30C4 = 30! / (4! * 26!) = 27405

Segundo the number of combinations of the other audience members filling the other 4 (8-4) spots n = 110, 140 - 30

110C4 = 110! / (4! * 106!) = 5773185

Now the total combinations of possible 8 contestants from the audience

140C8 = 140! / (8! * 132!) = 2.98 * 10 ^ 12

Finally, the probability is equal to:

P = (30C4 * 110C4) / 140C8

replacing:

P = 27405 * 5773185 / 2.98 * 10 ^ 12

P = 0.053

Therefore the probability is 5.3%

4 0
3 years ago
Find all solutions to the following quadratic equations, and write each equation in factored form.
dexar [7]

Answer:

(a) The solutions are: x=5i,\:x=-5i

(b) The solutions are: x=3i,\:x=-3i

(c) The solutions are: x=i-2,\:x=-i-2

(d) The solutions are: x=-\frac{3}{2}+i\frac{\sqrt{7}}{2},\:x=-\frac{3}{2}-i\frac{\sqrt{7}}{2}

(e) The solutions are: x=1,\:x=-1,\:x=\sqrt{5}i,\:x=-\sqrt{5}i

(f) The solutions are: x=1

(g) The solutions are: x=0,\:x=1,\:x=-2

(h) The solutions are: x=2,\:x=2i,\:x=-2i

Step-by-step explanation:

To find the solutions of these quadratic equations you must:

(a) For x^2+25=0

\mathrm{Subtract\:}25\mathrm{\:from\:both\:sides}\\x^2+25-25=0-25

\mathrm{Simplify}\\x^2=-25

\mathrm{For\:}x^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}x=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}\\\\x=\sqrt{-25},\:x=-\sqrt{-25}

\mathrm{Simplify}\:\sqrt{-25}\\\\\mathrm{Apply\:radical\:rule}:\quad \sqrt{-a}=\sqrt{-1}\sqrt{a}\\\\\sqrt{-25}=\sqrt{-1}\sqrt{25}\\\\\mathrm{Apply\:imaginary\:number\:rule}:\quad \sqrt{-1}=i\\\\\sqrt{-25}=\sqrt{25}i\\\\\sqrt{-25}=5i

-\sqrt{-25}=-5i

The solutions are: x=5i,\:x=-5i

(b) For -x^2-16=-7

-x^2-16+16=-7+16\\-x^2=9\\\frac{-x^2}{-1}=\frac{9}{-1}\\x^2=-9\\\\\mathrm{For\:}x^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}x=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}\\x=\sqrt{-9},\:x=-\sqrt{-9}

The solutions are: x=3i,\:x=-3i

(c) For \left(x+2\right)^2+1=0

\left(x+2\right)^2+1-1=0-1\\\left(x+2\right)^2=-1\\\mathrm{For\:}\left(g\left(x\right)\right)^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}g\left(x\right)=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}\\\\x+2=\sqrt{-1}\\x+2=i\\x=i-2\\\\x+2=-\sqrt{-1}\\x+2=-i\\x=-i-2

The solutions are: x=i-2,\:x=-i-2

(d) For \left(x+2\right)^2=x

\mathrm{Expand\:}\left(x+2\right)^2= x^2+4x+4

x^2+4x+4=x\\x^2+4x+4-x=x-x\\x^2+3x+4=0

For a quadratic equation of the form ax^2+bx+c=0 the solutions are:

x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}

\mathrm{For\:}\quad a=1,\:b=3,\:c=4:\quad x_{1,\:2}=\frac{-3\pm \sqrt{3^2-4\cdot \:1\cdot \:4}}{2\cdot \:1}

x_1=\frac{-3+\sqrt{3^2-4\cdot \:1\cdot \:4}}{2\cdot \:1}=\quad -\frac{3}{2}+i\frac{\sqrt{7}}{2}\\\\x_2=\frac{-3-\sqrt{3^2-4\cdot \:1\cdot \:4}}{2\cdot \:1}=\quad -\frac{3}{2}-i\frac{\sqrt{7}}{2}

The solutions are: x=-\frac{3}{2}+i\frac{\sqrt{7}}{2},\:x=-\frac{3}{2}-i\frac{\sqrt{7}}{2}

(e) For \left(x^2+1\right)^2+2\left(x^2+1\right)-8=0

\left(x^2+1\right)^2= x^4+2x^2+1\\\\2\left(x^2+1\right)= 2x^2+2\\\\x^4+2x^2+1+2x^2+2-8\\x^4+4x^2-5

\mathrm{Rewrite\:the\:equation\:with\:}u=x^2\mathrm{\:and\:}u^2=x^4\\u^2+4u-5=0\\\\\mathrm{Solve\:with\:the\:quadratic\:equation}\:u^2+4u-5=0

u_1=\frac{-4+\sqrt{4^2-4\cdot \:1\left(-5\right)}}{2\cdot \:1}=\quad 1\\\\u_2=\frac{-4-\sqrt{4^2-4\cdot \:1\left(-5\right)}}{2\cdot \:1}=\quad -5

\mathrm{Substitute\:back}\:u=x^2,\:\mathrm{solve\:for}\:x\\\\\mathrm{Solve\:}\:x^2=1=\quad x=1,\:x=-1\\\\\mathrm{Solve\:}\:x^2=-5=\quad x=\sqrt{5}i,\:x=-\sqrt{5}i

The solutions are: x=1,\:x=-1,\:x=\sqrt{5}i,\:x=-\sqrt{5}i

(f) For \left(2x-1\right)^2=\left(x+1\right)^2-3

\left(2x-1\right)^2=\quad 4x^2-4x+1\\\left(x+1\right)^2-3=\quad x^2+2x-2\\\\4x^2-4x+1=x^2+2x-2\\4x^2-4x+1+2=x^2+2x-2+2\\4x^2-4x+3=x^2+2x\\4x^2-4x+3-2x=x^2+2x-2x\\4x^2-6x+3=x^2\\4x^2-6x+3-x^2=x^2-x^2\\3x^2-6x+3=0

\mathrm{For\:}\quad a=3,\:b=-6,\:c=3:\quad x_{1,\:2}=\frac{-\left(-6\right)\pm \sqrt{\left(-6\right)^2-4\cdot \:3\cdot \:3}}{2\cdot \:3}\\\\x_{1,\:2}=\frac{-\left(-6\right)\pm \sqrt{0}}{2\cdot \:3}\\x=\frac{-\left(-6\right)}{2\cdot \:3}\\x=1

The solutions are: x=1

(g) For x^3+x^2-2x=0

x^3+x^2-2x=x\left(x^2+x-2\right)\\\\x^2+x-2:\quad \left(x-1\right)\left(x+2\right)\\\\x^3+x^2-2x=x\left(x-1\right)\left(x+2\right)=0

Using the Zero Factor Theorem: = 0 if and only if = 0 or = 0

x=0\\x-1=0:\quad x=1\\x+2=0:\quad x=-2

The solutions are: x=0,\:x=1,\:x=-2

(h) For x^3-2x^2+4x-8=0

x^3-2x^2+4x-8=\left(x^3-2x^2\right)+\left(4x-8\right)\\x^3-2x^2+4x-8=x^2\left(x-2\right)+4\left(x-2\right)\\x^3-2x^2+4x-8=\left(x-2\right)\left(x^2+4\right)

Using the Zero Factor Theorem: = 0 if and only if = 0 or = 0

x-2=0:\quad x=2\\x^2+4=0:\quad x=2i,\:x=-2i

The solutions are: x=2,\:x=2i,\:x=-2i

3 0
3 years ago
Other questions:
  • 3.An increasing linear function with independent variable x and dependent variable y approaches the point (−1, 1). If this funct
    5·1 answer
  • Dan's doctor recommends that 45% of the calories Dan
    7·1 answer
  • How many inches in 6 1/2 feet
    15·2 answers
  • Solve the equation<br>(5p-8)/2=(7p+4)/6​
    10·1 answer
  • (98 - 78) x 11 juhjjgghjnbhjhbjnbjmjjhjhjh
    15·2 answers
  • HURRYY!!! <br> which exponential function is represented by the graph
    6·1 answer
  • Help me solve this!!!!!!!!!
    13·1 answer
  • An online DVD rental site charges a monthly membership fee of $10,
    15·1 answer
  • Accountancy
    9·1 answer
  • A rectangle is 12cm long and 5cm wide. Find the size of the angle marked x.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!