We need to directly measure the spectral type in order to determine the surface temperature of a star.
<h3>How do you find the properties of a star?</h3>
Astronomers can determine the temperature of a star by looking at its color and spectrum. The apparent brightness of a star describes how luminous it looks to us. The brightness of a star tells us how bright it really is. The luminance can be determined using both the perceived brightness and the distance.
A star's luminosity, or the total amount of energy it emits each second, is determined by two factors: The stellar photosphere's "Effective Temperature," T. the star's total surface area, which is influenced by its radius, R.
Because it controls how much fuel a star has and how quickly it burns it, a star's mass is its most fundamental characteristic. The majority of a star's life is spent burning hydrogen into helium in its core, which generates energy. The star needs to achieve a balance between gravity and outward pressure in order to continue to be "alive."
To know more about stellar property visit:
brainly.com/question/14950677
#SPJ4
When you reverse the direction of the current, the current loop generated by the magentic field is revered.
Answer:
Explanation:
We shall apply concept of impulse
Impulse = Force x time
= Force x 2 x 10⁻³ N.s
impulse = change in momentum
change in momentum
= .4 x 4 - ( - .4 x 2 )
= 2.4
Force x 2 x 10⁻³ = 2.4
Force = 2.4 / 2 x 10⁻³
= 1.2 x 10³ N .
average magnitude of the force exerted by floor = 1.2 x 10³ N
If R be reaction force by earth
R - mg = 1.2 x 10³
R = 1.2 x 10³ + mg
= 1200 + .4 x 9.8
= 1200 +3.92
= 1203 .92 N .
Geology belongs to the category of Natural Sciences. Natural sciences is the study of natural phenomena. Among the natural sciences, we have physical science, which is the study of non-living systems. Further along this branch, we have earth sciences where Geology belongs.
Answer:
Distance traveled during this acceleration will be 6950 m
Explanation:
Wear have given maximum speed tat will be equal to final speed of the car v = 278 m/sec
Constant acceleration
As the car starts initially starts from rest so initial velocity of the car u = 0 m/sec
From third equation of motion
Putting all values in equation
s = 6950 m
So distance traveled during this acceleration will be 6950 m