Answer:
acceleration, a = 9.8 m/s²
Explanation:
'A ball is dropped from the top of a building' indicates that the initial velocity of the ball is zero.
u = 0 m/s
After 2 seconds, velocity of the ball is 19.6 m/s.
t = 2s, v = 19.6 m/s
Using
v = u + at
19.6 = 0 + 2a
a = 9.8 m/s²
I am pretty sure that the only statement which is true for particles of the medium of an earthquake P-wave is being shown in the option : b)vibrate parallel to the wave, forming compressions and rarefactions. As you know, it can be formed in two ways : from alternating compressions and rarefactions or primary wave. I bet you will agree with me.
Answer:
The component form will be;
In the x-axis = 121.73 due west
In the y-axis = 690.35 due south
Explanation:
An image of the calculation has been attached
Answer:
a) v₂ = 4.2 m/s
b) v₂ = 5 m/s
Explanation:
a)
We will use the law of conservation of momentum here:

where,
m₁ = m₂ = mass of bowling pin = 1.8 kg
u₁ = speed of first pin before collsion = 5 m/s
u₂ = speed of second pin before collsion = 0 m/s
v₁ = speed of first pin after collsion = 0.8 m/s
v₂ = speed of second after before collsion = ?
Therefore,

<u>v₂ = 4.2 m/s</u>
<u></u>
b)
We will use the law of conservation of momentum here:

where,
m₁ = m₂ = mass of bowling pin = 1.8 kg
u₁ = speed of first pin before collsion = 5 m/s
u₂ = speed of second pin before collsion = 0 m/s
v₁ = speed of first pin after collsion = 0 m/s
v₂ = speed of second after before collsion = ?
Therefore,

<u>v₂ = 5 m/s</u>