Answer:
We conclude that the kinetic energy of a 1.75 kg ball traveling at a speed of 54 m/s is 2551.5 J.
Explanation:
Given
To determine
Kinetic Energy (K.E) = ?
We know that a body can possess energy due to its movement — Kinetic Energy.
Kinetic Energy (K.E) can be determined using the formula

where
- K.E is the Kinetic Energy (J)
now substituting m = 1.75, and v = 54 in the formula



J
Therefore, the kinetic energy of a 1.75 kg ball traveling at a speed of 54 m/s is 2551.5 J.
Answer:
The current in the circuit increases
Explanation:
The ohm's law states that the potential across a circuit is proportional to the current in the circuit.
V ∝ I
Where 'V' is the potential difference across the circuit and 'I' is the current in the circuit.
The proportionality constant present in the equation is the resistance of the circuit. Hence, the equation becomes
V = IR
According to the equation, when V is directly proportional to 'I' where 'R' remains as constant, then the change in 'V is brings change in 'I' to make the equation valid.
So, when there is an increase in the voltage, the current on the circuit increases.
The Period of the resulting shm will be T=39.7
<u>Explanation:</u>
<u>Given data</u>
m=3kg
d=.06m
k=1200 N/m
Θ=3 °
T=?
we have the formulas,
I = (1/6)Md2
F = ma
F = -kx = -(mω2x)
k = mω2 τ = -d(FgsinΘ)
T=2 x 3.14/ √(m/k)
Solution for the given problem would be,
F=-Kx (where x= dsin Θ)
F=-k dsin Θ
F=-(1200)(.06)sin(3 °)
F=-10.16N
<u>By newton's second law.</u>
F = ma
a= F/m
a=(-10.16N)/3
a=3.38
<u>using the k=mω value</u>
k=mω
ω=k/m
ω=1200/3
ω=400
<u>Using F = -kx value</u>
x = F/-k
x=(-10.16)/1200
x=0.00847m
<u>Restoring the torque value </u>
τ = -dmgsinΘ where( τ = Iα so.).. Iα = -dmgsinΘ α = -(.06)(4)α =
α =(.06)(4)(9.81)sin(4°)
α=-1.781
<u>Rotational to linear form</u>
a = αr
r = .1131 m
a=-1.781 x .1131 m
a=-0.2015233664
<u>Time Period</u>
T=2 x 3.14/ √(m/k)
T=6.28/√(3/1200)
T=6.28/0.158
T=39.7