Answer:
a.proton, proton
hope this helped :) have a goodday
I can think of two possible and logical questions for the problem given. First, you can calculate for the maximum height reached by the blue ball. Second, you can compute the length of time for the two balls to be at the same height. If so, the solution are as follows:
When the object is thrown upwards or when the object is dropped from a height, the only force acting upon it is the gravitational force. Because of this, it simplifies equations of motion.
1. For the maximum height, the equation is
H = v₀²/2g
where
v₀ is the initial speed
g is the acceleration due to gravity equal to 9.81 m/s²
For the blue ball, v₀ = 21.8 m/s. Substituting the values:
H = (21.8 m/s)²/2(9.81m/s²)
H = 24.22 m
The maximum height reached by the blue ball is 24.22 m + 0.9 = 25.12 m.
2. For this, you equate the y values of both balls:
y for red ball = y for blue ball
v₀t + 0.5gt² = v₀t + 0.5gt²
(10.4 m/s)t + 0.5(9.81 m/s²)(t²) + 26.6 m = (21.8 m/s)t + 0.5(9.81 m/s²)(t²) + 0.9 m
Solving for t,
t = 2.25 seconds
Thus, the two balls would be at the same height after 2.25 seconds.
Answer:
Explanation:
When we apply a horizontal force of 76 N to a block, the block moves across the floor at a constant speed. So net force on the block is zero .
It implies that a force ( frictional ) acts on it which is equal to 76 N in opposite direction ( friction )
When we apply a greater force on it it starts moving with acceleration .
This time kinetic friction acts on it due to rough ground equal to 76 N .This is limiting friction ( maximum friction )
Net force on the body in later case
= 89 - 76
= 13 N
Force by ground on the block in horizontal direction = 76 N ( FRICTIONAL FORCE )
=
Answer: i would do something that is really easy and i will do test 2 where there aint a word problems and i am going 2 put the work 2 where it is 2 there standard i aint going 2 do sum over there standards of science.
Explanation: