The law of conservation of energy states that in a closed or isolated system, the amount of energy remains constant because energy can neither be created or destroyed. It can only be transferred from one form into another. This applies to all forms of energy.
Answer:
A) 60%
B) p2 = 1237.2 kPa
v2 = 0.348 m^3
C) w1-2 = w3-4 = 1615.5 kJ
Q2-3 = 60 kJ
Explanation:
A) calculate thermal efficiency
Л = 1 -
where Tl = 300 k
Th = 750 k
hence thermal efficiency ( Л ) = [1 - ( 300 / 750 )] * 100 = 60%
B) calculate the pressure and volume at the beginning of the isothermal expansion
calculate pressure ( P2 ) :
= P3v3 = mRT3 ----- (1)
v3 = 0.4m , mR = 2* 0.287, T3 = 750
hence P3 = 1076.25
next equation to determine P2
Qex = p3v3 ln( p2/p3 )
60 = 1076.25 * 0.4 ln(p2/p3)
hence ; P2 = 1237.2 kpa
calculate volume ( V2 )
p2v2 = p3v3
v2 = p3v3 / p2
= (1076.25 * 0.4 ) / 1237.2
= 0.348 m^3
C) calculate the work and heat transfer for each four processes
work :
W1-2 = mCv( T2 - T1 )
= 2*0.718 ( 750 - 300 ) = 1615.5 kJ
W3-4 = 1615.5 kJ
heat transfer
Q2-3 = W2-3 = 60KJ
Q3-4 = 0
D ) sketch of the cycle on p-V coordinates
attached below
Answer:
Explanation:
Let the velocity of projectile be v and angle of throw be θ.
The projectile takes 5 s to touch the ground during which period it falls vertically by 100 m
considering its vertical displacement
h = - ut +1/2 g t²
100 = - vsinθ x 5 + .5 x 9.8 x 5²
5vsinθ = 222.5
vsinθ = 44.5
It covers 160 horizontally in 5 s
vcosθ x 5 = 160
v cosθ = 32
squaring and adding
v²sin²θ +v² cos²θ = 44.4² + 32²
v² = 1971.36 + 1024
v = 54.73 m /s
There are correlation and causation between the force of the finger and the movement of the books
Answer:
Explanation:
<u></u>
<u>1. Formulae:</u>
Where:
- E = kinetic energy of the particle
- λ = de-Broglie wavelength
- m = mass of the particle
- v = speed of the particle
- h = Planck constant
<u><em>2. Reasoning</em></u>
An alha particle contains 2 neutrons and 2 protons, thus its mass number is 4.
A proton has mass number 1.
Thus, the relative masses of an alpha particle and a proton are:
For the kinetic energies you find:
Thus:
From de-Broglie equation, λ = h/(mv)