1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
likoan [24]
3 years ago
13

You could use newton’s second law to calculate the force applied to an object if you knew the objects mass and its _____.

Physics
1 answer:
olga2289 [7]3 years ago
4 0

Answer:

You could use newton’s second law to calculate the force applied to an object if you knew the objects mass and its <u>acceleration.</u>

Explanation:

By, Newtons second law, the force applied on an object directly varies with the acceleration caused and the mass of the object.

This is given by :

F=m\ a

Where F represents force applied on the object , m represents mass of the object and a represents the acceleration.

In order to calculate force applied on object we require the mass of the object and its acceleration. The force can be calculated by finding the product of mass and acceleration of the object.

You might be interested in
Use examples to explain how the geosphere interacts with two other of Earth's spheres. Explain the interaction for each using co
Orlov [11]

The geosphere interacts with the hydrosphere when water causes rock to erode. The atmosphere provides the geosphere with heat and energy for erosion, and the geosphere reflects the sun's energy back into the atmosphere.

7 0
2 years ago
Read 2 more answers
The smallest unit of charge is − 1.6 × 10 − 19 C, which is the charge in coulombs of a single electron. Robert Millikan was able
vovangra [49]

Answer:

-8.0 \times 10 ^{-19 }\ C,\ -3.2 \times 10 ^{-19 }\ C, -4.8 \times 10 ^{-19 }\ C

Explanation:

<u>Charge of an Electron</u>

Since Robert Millikan determined the charge of a single electron is

q_e=-1.6\cdot 10^{-19}\ C

Every possible charged particle must have a charge that is an exact multiple of that elemental charge. For example, if a particle has 5 electrons in excess, thus its charge is 5\times -1.6\cdot 10^{-19}\ C=-8 \cdot 10^{-19}\ C

Let's test the possible charges listed in the question:

-8.0 \times 10 ^{-19 }. We have just found it's a possible charge of a particle

-3.2 \times 10 ^{-19 }. Since 3.2 is an exact multiple of 1.6, this is also a possible charge of the oil droplets

-1.2 \times 10 ^{-19 } this is not a possible charge for an oil droplet since it's smaller than the charge of the electron, the smallest unit of charge

-5.6 \times 10 ^{-19 },\ -9.4 \times 10 ^{-19 } cannot be a possible charge for an oil droplet because they are not exact multiples of 1.6

Finally, the charge -4.8 \times 10 ^{-19 }\ C is four times the charge of the electron, so it is a possible value for the charge of an oil droplet

Summarizing, the following are the possible values for the charge of an oil droplet:

-8.0 \times 10 ^{-19 }\ C,\ -3.2 \times 10 ^{-19 }\ C, -4.8 \times 10 ^{-19 }\ C

5 0
2 years ago
If a car is traveling 27 meters in 3 seconds, what is its speed?
KIM [24]
9 because speed=distance/ time
5 0
2 years ago
A playground merry-go-round has a radius of 4.6 m and a moment of inertia of 200 kg-m2 and turns with negligible friction about
tankabanditka [31]

Answer:

8050 J

Explanation:

Given:

r = 4.6 m

I = 200 kg m²

F = 26.0 N

t = 15.0 s

First, find the angular acceleration.

∑τ = Iα

Fr = Iα

α = Fr / I

α = (26.0 N) (4.6 m) / (200 kg m²)

α = 0.598 rad/s²

Now you can find the final angular velocity, then use that to find the rotational energy:

ω = αt

ω = (0.598 rad/s²) (15.0 s)

ω = 8.97 rad/s

W = ½ I ω²

W = ½ (200 kg m²) (8.97 rad/s)²

W = 8050 J

Or you can find the angular displacement and find the work done that way:

θ = θ₀ + ω₀ t + ½ αt²

θ = ½ (0.598 rad/s²) (15.0 s)²

θ = 67.3 rad

W = τθ

W = Frθ

W = (26.0 N) (4.6 m) (67.3 rad)

W = 8050 J

6 0
2 years ago
Why is doing research helpful if you're creating the procedure for an experiment?
never [62]

B. The answer is most likely B                                                                    

7 0
3 years ago
Other questions:
  • What properties of sound determine the volume of sound?
    10·1 answer
  • If a car used 260.000 W of power to complete a race in 15 s. how much work did the car do?
    9·1 answer
  • In two grams of element x combine with 4 grams of element y to form compound xy how many grams of element why would combined wit
    13·1 answer
  • How would you calculate power if work is not done?
    6·1 answer
  • Suppose you are taking a walk one day when you see a tree branch snap at its base and begin to rotate downward with the break ne
    13·1 answer
  • Gold has a specific heat of 0.130 J/g*C. If 195 joules of heat are added to 15 grams of gold how much does the temperature of th
    7·1 answer
  • A 920-kg sports car collides into the rear end of a 2300-kg SUV stopped at a red light. The bumpers lock, the brakes are locked,
    5·1 answer
  • SOMEONE WHO KNOWS AND CAN HELP WITH ACCELERATION AND VELOCITY PLEASE HURRY HELP
    13·1 answer
  • The room temprature (25 C) fats in unsaturated fatty acids are <br>​
    9·2 answers
  • DONT ANSWER WITH A LINK PLEASE I NEED AN ANSWER FROM SOMEONE!
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!