Answer:
Velocity is 1.73 m/s along 54.65° south of east.
Explanation:
Let unknown velocity be v, mass of billiard ball be m and east direction be positive x axis.
Here momentum is conserved.
Initial momentum = Final momentum
Initial momentum = m x 2i + m x (-1)i = m i
Final momentum = m x v + m x 1.41 j = mv + 1.41 m j
Comparing
mi = mv + 1.41 m j
v = i - 1.41 j
Magnitude of velocity
Direction,
Velocity is 1.73 m/s along 54.65° south of east.
Explanation:
It is given that,
Velocity in East, 
Velocity in North, 
(a) The resultant velocity is given by :

(b) The width of the river is, d = 80 m
Let t is the time taken by the boat to travel shore to shore. So,


t = 16 seconds
(c) Let x is the distance covered by the boat to reach the opposite shore. So,


x = 48 meters
Hence, this is the required solution.
When a current flows through coil, magnetic field is produced around the coil which induces emf also known as back emf. When current in the coil is increased, more magnetic field is produced which in turn increases the induced emf.
An atom is the building block of all matter. Electrons, protons and neutrons make up the atom. protons and neutrons make up the nucleus of the atom, and the electrons are on the electron shell.
To solve this problem we will use the trigonometric concepts to find the distance h, which will allow us to find the speed of Jeff and that will finally be the variable that will indicate the total tension, since it is the variable of the centrifugal Force given in the vine at the lowest poing of the swing.
From the image:


When Jeff reaches his lowest point his potential energy is converted to kinetic energy





Tension in the string at the lowest point is sum of weight of Jeff and the his centripetal force




Therefore the tension in the vine at the lowest point of the swing is 842.49N