Answer:
D) Vertically.
Explanation:
A free body diagram is used to represent all the forces acting in a body. forces like, the force of gravity as a result of the gravitational interaction between the object and the Earth (W), the frictional force opposite to the movement of the object (), the normal force due to the plane and the object (N) and the force applied to start the movement in a particular direction (F).
As is show in the free body diagram of the system, W, which is the weight of the body as a consequence of the gravitational force, is at an angle below the inclined plane. that angle between the plane and the x axis is the same that the one of the inclined plane with respect to the horizontal, Since its sides are perpendicular.
Notice how W goes always in the direction to the center of mass of Earth in a vertical path (For comparison see figure (a) and (b)).
Right when it’s about to go down and stopped.
Weight of an object is given by the formula W = m x g , where
m : mass of the object
g : gravitational acceleration
It is <u>independent of the horizontal </u><u>acceleration</u>.
<h3>What do we mean by weight of an object?</h3>
Weight is a gauge of how strongly gravity is<u> pulling something down.</u> It is dependent on the object's mass, or how much matter it consists of. It also depends on the <u>object's uniformly distributed</u> downward acceleration caused by gravity.
This equation can be used to express weight:
W = m x g
<h3>What is the difference between weight and mass of an object?</h3>
In everyday speech, the phrases "mass" and "weight" are frequently used interchangeably; nevertheless, the two concepts don't have the same meaning. In contrast to weight, which is a <u>measurement of</u> how the <u>force</u> of gravity works upon a mass, mass is the <u>amount of substance</u> in a material.
To learn more about gravity and acceleration :
brainly.com/question/13860566
#SPJ4
Hello There
Answers: T<span>he elastic potential energy can be increased by: </span>
<span>1) Getting a spring with a higher spring constant</span>
<span>2) Increasing the length at which the spring is compressed.
Reasons: Getting a stronger spring makes it stronger which equals more energy. While increasing the compression on the spring, increases the stored energy which makes it more powerful when its released
I hope this helps
-Chris</span>