1) Focal length
We can find the focal length of the mirror by using the mirror equation:

(1)
where
f is the focal length

is the distance of the object from the mirror

is the distance of the image from the mirror
In this case,

, while

(the distance of the image should be taken as negative, because the image is to the right (behind) of the mirror, so it is virtual). If we use these data inside (1), we find the focal length of the mirror:

from which we find

2) The mirror is convex: in fact, for the sign convention, a concave mirror has positive focal length while a convex mirror has negative focal length. In this case, the focal length is negative, so the mirror is convex.
3) The image is virtual, because it is behind the mirror and in fact we have taken its distance from the mirror as negative.
4) The radius of curvature of a mirror is twice its focal length, so for the mirror in our problem the radius of curvature is:
Explanation:
The first equation of motion in kinematics is given by :
.....(1)
u is initial speed
a is acceleration
v is final speed
t is time
Equation (1) is valid when the object is moving with constant acceleration. This equation gives relation between velocity and time.
There are two ways to solve this. The longer way is to use those equations to calculate numbers for total distance.
The easier way is to find the area under the graph. That's right, AREA UNDER VELOCITY-TIME graph is the TOTAL DISTANCE travelled!
it's a shortcut.
Let's split up the area into a triangle and rectangle:
Triangle = 0.5(4-0)(10-0) = 20 m
Rectangle = (6-4)(10-0) = 20 m
Total distance = 40 m!
Answer:
La respuesta es sí, hay una fuerza que actúa sobre el móvil A y es la única fuerza ya que A cae libremente bajo la influencia de la fuerza.
Explanation:
Según la primera ley de movimiento de Newton, un cuerpo continuará en su estado de reposo o en un movimiento uniforme en línea recta a menos que actúen sobre él fuerzas impresas.
Dado que el móvil A cae libremente, desde su estado de reposo inicial, según la primera ley de movimiento de Newton, experimenta una fuerza que actúa sobre él para hacer que caiga y continúe en caída libre.
El móvil B se mueve con una velocidad constante, por lo tanto, de acuerdo con la primera ley de movimiento de Newton, no hay fuerzas impresas que actúen sobre él.
El móvil C está completamente en reposo en el suelo, por lo tanto, tampoco hay fuerzas que actúen sobre él.
La respuesta es sí, hay una fuerza actuando sobre el móvil A y es la única fuerza cuando A cae libremente bajo la influencia de la fuerza.
For an object`s motion, the Kinematic equation is,

Here, v is the final velocity and h is stands for the height of the object and a is the acceleration of the object.
As according to question,
and 
Thus, putting these values in above equation, we get

or


Therefore, initial velocity is 2.8 m/s