Answer: The coefficient of static friction is 3.85 and The coefficient of kinetic friction is 2.8
Explanation:
in the attachment
Answer:
The average impact force is 12000 newtons.
Explanation:
By Impact Theorem we know that impact done by the sledge hammer on the chisel is equal to the change in the linear momentum of the former. The mathematical model that represents the situation is now described:
(1)
Where:
- Average impact force, in newtons.
- Duration of the impact, in seconds.
- Mass of the sledge hammer, in kilograms.
,
- Initial and final velocity, in meters per second.
If we know that
,
,
and
, then we estimate the average impact force is:


The average impact force is 12000 newtons.
Answer:
<u></u>
- <u>1. The potential energy of the swing is the greatest at the position B.</u>
- <u>2. As the swing moves from point B to point A, the kinetic energy is increasing.</u>
Explanation:
Even though the syntax of the text is not completely clear, likely because it accompanies a drawing that is not included, it results clear that the posittion A is where the seat is at the lowest position, and the position B is upper.
The gravitational <em>potential energy </em>is directly proportional to the height of the objects with respect to some reference altitude. Thus, when the seat is at the position A the swing has the smallest potential energy and when the seat is at the <em>position B the swing has the greatest potential energy.</em>
Regarding the forms of energy, as the swing moves from point B to point A, it is going downward, gaining kinetic energy (speed) at the expense of the potential energy (losing altitude). When the seat passes by the position A, the kinetic energy is maximum and the potential energy is miminum. Then the seat starts to gain altitude again, losing the kinetic energy and gaining potential energy, up to it gets to the other end,
When spring times comes around you ever be like, "k." If you feel like that every year during spring then there you go