Acceleration is the speed of an object speeding up
Whether it is velocity or just speed
Answer:

Explanation:
Given:
- temperature of skin,

- initial temperature of steam vapour,

- latent heat of steam,

- mass of steam,

- specific heat of water,

- final temperature,

<em>Assuming that no heat is lost in the surrounding.</em>
<u>We know:</u>

<u>Now the total heat given by the steam to form water at the given conditions:</u>
..............................(1)
where:
latent heat given out by vapour to form water of 100°C
heat given by water of 100°C to come at 34°C.
putting respective values in eq. (1)



is the heat transferred to the skin.
Hello!
Because as you get closer to the surface of the earth, the more air that is on top of you. At the top of the atmosphere, there is less air, and everything is a vacuum, where you have no weight. When you get close to the earth, the weight of the air builds until it when you're at the very lowest point of the earths surface, all the air in the atmosphere above you is pressing down.
Thank You!
1. 168.1 Hz
To find the apparent frequency heard by the driver in the car, we can use the formula for the Doppler effect:

where
f is the original sound of the horn
v is the speed of sound
is the velocity of the observer (the driver and the car), which is positive if the observer is moving towards the source and negative if it is moving away
is the velocity of the sound source (the train), which is positive if the source is moving away from the observer and negative otherwise
In this problem we have, according to the sign convention used:

Substituting, we find:

2. 
The speed of light can be calculated as

where
d is the distance travelled
t is the time taken
In this problem:
is the total distance travelled by the laser beam (twice the distance between the Earth and the Moon)
t = 2.60 s is the time taken
Substituting in the formula,

Answer:
If an object has a net force acting on it, it will accelerate. The object will speed up, slow down or change direction. An unbalanced force (net force) acting on an object changes its speed and/or direction of motion. An unbalanced force is an unopposed force that causes a change in motion.
Explanation:
I hope this helps you out and if your feeling generous plz mark brainliest it helps me a lot thank you:)