Answer:
a) Initial Value Problem
dv/dt = 4 - 0.1v
v(0) = 0
b) solution to the IVP
v(t) = 40(1 - e^(-t/10))
c) Limiting velocity
Vo = 40 ft/s
Position of the car after 12 hours
X = 14,390 ft
Explanations:
The complete explanations of each of the sections contained in the question are in the files attached to this solution.
How do you ask a question but don’t know the answer we will never know
Answer:
The orbital period of the planet is 387.62 days.
Explanation:
Given that,
Mass of planet
Mass of star 
Radius of the orbit
Using centripetal and gravitational force
The centripetal force is given by


We know that,

....(I)
The gravitational force is given by
....(II)
From equation (I) and (II)

Where, m = mass of planet
m' = mass of star
G = gravitational constant
r = radius of the orbit
T = time period
Put the value into the formula





Hence, The orbital period of the planet is 387.62 days.