<h2>
After 26.28 seconds projectile returns 26.28 seconds.</h2>
Explanation:
Initial velocity = 450 ft/s = 137.16 m/s
Angle, θ = 70°
Consider the vertical motion of projectile,
When the projectile return to the ground we have
Displacement, s = 0 m
Acceleration, a = -9.81 m/s²
Initial velocity, u = 137.16 x sin70 = 128.89 m/s
Substituting in s = ut + 0.5 at²
s = ut + 0.5 at²
0 = 128.89 x t + 0.5 x (-9.81) x t²
t² - 26.28 t = 0
t ( t- 26.28) = 0
t = 0 s or t = 26.28 s
After 26.28 seconds projectile returns 26.28 seconds.
Answer:
1.551×10^-8 Ωm
Explanation:
Resistivity of a material is expressed as shown;.
Resistivity = RA/l
R is the resistance of the material
A is the cross sectional area
l is the length of the wire.
Given;
R = 0.0310 Ω
A = πd²/4
A = π(2.05×10^-3)²/4
A = 0.000013204255/4
A = 0.00000330106375
A = 3.30×10^-6m
l = 6.60m
Substituting this values into the formula for calculating resistivity.
rho = 0.0310× 3.30×10^-6/6.60
rho = 1.023×10^-7/6.60
rho = 1.551×10^-8 Ωm
Hence the resistivity of the material is 1.551×10^-8 Ωm
Explanation:
1.The somatic nervous system is the part of the peripheral nervous system associated with the voluntary control of body movements via skeletal muscles.
2. The autonomic nervous system is a control system that acts largely unconsciously and regulates bodily functions, such as the heart rate, digestion, respiratory rate, pupillary response, urination, ect...
3. Sympathetic Division is a term used by researchers and medical practitioners to describe the subdivision of the autonomic nervous system (that controls involuntary and automatic physical reactions) that responds to emergency situations by mobilizing and controlling the energy necessary to cope with the situation.
4. The part of the autonomic nervous system that tends to act in opposition to the sympathetic nervous system, as by slowing down the heart and dilating the blood vessels. It also regulates the function of many glands, such as those that produce tears and saliva.
5. a regulatory substance produced in an organism and transported in tissue fluids such as blood or sap to stimulate specific cells or tissues into action.
FMRI creates the images or brain maps of brain functioning by setting up and utilizing an advanced MRI scanner in such a way that increased blood flow to the activated areas of the brain shows up on the MRI scan. The MRI scanners do not actually detect blood flow or other metabolic processes.