Answer:
From the narrative in the question, there seem to have been a break failure and the ordered step of response to this problem is to
1) Put on the hazard light to inform other road users of a problem or potential fault with your car and so they should continue their journey with caution.
2) Avoid pressing on the acceleration pedal as this might cause the car to gradually slow down due to friction and gravity
3)Try navigate the car to the service lane. This is the less busy lane where cars are sometimes parked briefly.
4) Continuously pump the breaks to try stop the car. Continuously pumping the breaks might just help you build enough pressure to stop the car because often time, there are some pressure left in the break.
5) At this point, the speed of the car should be relatively slow. So at this point, you could try apply the emergency hand break. Do not pull the emergency hand breaks if the car is on high speed. Doing this may cause the car to skid off the road.
Answer:
Height of 15 kg Object is the correct answer.
Explanation:
Because the IV (Independent Variable) is always on the x-axis.
Answer:
final velocity will be44.72m/s
Explanation:
HEIGHT=h=100m
vi=0m/s
vf=?
g=10m/s²
by using third equation of motion for bodies under gravity
2gh=(vf)²-(vi)²
evaluating the formula
2(10m/s²)(100m)=vf²-(0m/s)²
2000m²/s²=vf²
√2000m²/s²=√vf²
44.72m/s=vf
The liquid is called condensation and its generally formed when water vaor in the air cools down rapidly and collects around or on an object forming water droplets.
Answer:
Time take to fill the standing wave to the entire length of the string is 1.3 sec.
Explanation:
Given :
The length of the one end
, frequency of the wave
= 2.3 Hz, wavelength of the wave λ = 1 m.
Standing wave is the example of the transverse wave, standing wave doesn't transfer energy in a medium.
We know,
∴
λ
Where
speed of the standing wave.
also, ∴ 
where
time take to fill entire length of the string.
Compare above both equation,
⇒
sec

Therefore, the time taken to fill entire length 0f the string is 1.3 sec.