1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
allsm [11]
3 years ago
12

In the absence of air resistance and friction, what will happen to the velocity of an object going at 20 m/s E?

Physics
1 answer:
MariettaO [177]3 years ago
3 0
In the absence of any other forces, the object will continue to move at 20 m/s E.

In fact, Newton's second law states that the resultant of the forces acting on an object is equal to the product between the mass and the acceleration of the object:
\sum F = ma
therefore, if there are no forces acting on the object, the term on the left is zero, and the acceleration of the object is zero as well. This means that the object will continue its motion with constant speed, and in the same direction.
You might be interested in
8. How did the measured angular magnification of the telescope compare with the theoretical prediction?
Genrish500 [490]

Complete Question

The complete question is shown on the first uploaded image  

Answer:

The theoretical angular magnification lies within the angular magnification range

Explanation:

From the question we are told that

   The  focal length of  B  is  f_{objective } =  43.0 \ cm

    The focal length of  A  is   f_{eye} =  10.4 \  cm

The  theoretical angular  magnification is mathematically represented as

           m = \frac{f_{objective }}{f_{eye}}  =  \frac{43.0}{10.4}

            m = \frac{f_{objective }}{f_{eye}}  =  4.175

Form the question the measured angular magnification ranges from 4 -5

So from the value calculated and the value given we can deduce that the theoretical angular  magnification lies within the angular magnification range

3 0
3 years ago
Timed please hurry
vladimir1956 [14]
The answer is D. disorganized
5 0
2 years ago
Read 2 more answers
The redshift of the galaxies is correctly interpreted as
pickupchik [31]
Doppler shift due to random motion of galaxies ,an aging of light as gravity weakens with time ,the difference in temperature and star formation in old and new galaxies
5 0
3 years ago
Read 2 more answers
How do you calculate speed
Kryger [21]

Answer:

distance(d)=.....

time(t)=....

speed =?

we know that

speed =distance /time

8 0
3 years ago
Read 2 more answers
A block of mass m=2.20m=2.20 kg slides down a 30.0^{\circ}30.0
Xelga [282]

Answer:

v_m \approx -4.38\; \rm m \cdot s^{-1} (moving toward the incline.)

v_M \approx 4.02\; \rm m \cdot s^{-1} (moving away from the incline.)

(Assumption: g = 9.81\; \rm m \cdot s^{-2}.)

Explanation:

If g = 9.81\; \rm m \cdot s^{-2}, the potential energy of the block of m = 2.20\; \rm kg would be m \cdot g\cdot h = 2.20\; \rm kg \times 9.81\; \rm m \cdot s^{-2} \times 3.60\; \rm m \approx 77.695\; \rm J when it was at the top of the incline.

If friction is negligible, all these energies would be converted to kinetic energy when this block reaches the bottom of the incline. There shouldn't be any energy loss along the horizontal surface, either. Therefore, the kinetic energy of this m = 2.20\; \rm kg\! block right before the collision would also be approximately 77.695\; \rm J.

Calculate the velocity of that m = 2.20\; \rm kg based on its kinetic energy:

\displaystyle v_m(\text{initial}) = \sqrt{\frac{2\times (\text{Kinetic Energy})}{m}} \approx \sqrt{\frac{2 \times 77.695\; \rm J}{2.20\; \rm kg}} \approx 8.4043\; \rm m \cdot s^{-1}}.

A collision is considered as an elastic collision if both momentum and kinetic energy are conserved.

Initial momentum of the two blocks:

p_m = m \cdot v_m(\text{initial}) \approx 2.20\; \rm kg \times 8.4043\; \rm m \cdot s^{-1} \approx 18.489\; \rm kg \cdot m \cdot s^{-1}.

p_M = M \cdot v_M(\text{initial}) \approx 2.20\; \rm kg \times 0\; \rm m \cdot s^{-1} \approx 0\; \rm kg \cdot m \cdot s^{-1}.

Sum of the momentum of each block right before the collision: approximately 18.489\; \rm kg \cdot m \cdot s^{-1}.

Sum of the momentum of each block right after the collision: (m\cdot v_m + m \cdot v_M).

For momentum to conserve in this collision, v_m and v_M should ensure that m\cdot v_m + m \cdot v_M \approx 18.489\; \rm kg \cdot m \cdot s^{-1}.

Kinetic energy of the two blocks right before the collision: approximately 77.695\; \rm J and 0\; \rm J. Sum of these two values: approximately 77.695\; \rm J\!.

Sum of the energy of each block right after the collision:

\displaystyle \left(\frac{1}{2}\, m \cdot {v_m}^2 + \frac{1}{2}\, M \cdot {v_M}^2\right).

Similarly, for kinetic energy to conserve in this collision, v_m and v_M should ensure that \displaystyle \frac{1}{2}\, m \cdot {v_m}^2 + \frac{1}{2}\, M \cdot {v_M}^2 \approx 77.695\; \rm J.

Combine to obtain two equations about v_m and v_M (given that m = 2.20\; \rm kg whereas M = 7.00\; \rm kg.)

\left\lbrace\begin{aligned}& m\cdot v_m + m \cdot v_M \approx 18.489\; \rm kg \cdot m \cdot s^{-1} \\ & \frac{1}{2}\, m \cdot {v_m}^2 + \frac{1}{2}\, M \cdot {v_M}^2 \approx 77.695\; \rm J\end{aligned}\right..

Solve for v_m and v_M (ignore the root where v_M = 0.)

\left\lbrace\begin{aligned}& v_m \approx -4.38\; \rm m\cdot s^{-1} \\ & v_M \approx 4.02\; \rm m \cdot s^{-1}\end{aligned}\right..

The collision flipped the sign of the velocity of the m = 2.20\; \rm kg block. In other words, this block is moving backwards towards the incline after the collision.

6 0
2 years ago
Other questions:
  • The coefficient of linear expansion of ordinary glass is three times that of Pyrex glass. An ordinary glass rod and a Pyrex glas
    6·1 answer
  • When the mirror is rotated, the normal will turn as well, but will the incident Ray and reflected ray turn?
    9·1 answer
  • What is weight in Newton’s, of a 50.-kg person on earth
    6·1 answer
  • When you pull back a sling shot, it has ________ energy because letting go of it will cause it to move.
    14·1 answer
  • Researchers conducted an experiment to identify the effects of three different hand sanitizers on the growth of bacteria. The re
    11·1 answer
  • A 250 GeV beam of protons is fired over a distance of 1 km. If the initial size of the wave packet is 1 mm, find its final size
    15·1 answer
  • When Earth runs into the dust trail left behind by a comet that is orbiting the Sun, Earth experiences a _____.
    10·2 answers
  • The surface tension of isopropanol in air has a value of 23.00 units and the
    6·2 answers
  • Elements that typically give up electrons CHECK ALL THAT APPLY
    14·1 answer
  • I need help because I don't get it​
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!