Answer:
1170 m
Explanation:
Given:
a = 3.30 m/s²
v₀ = 0 m/s
v = 88.0 m/s
x₀ = 0 m
Find:
x
v² = v₀² + 2a(x - x₀)
(88.0 m/s)² = (0 m/s)² + 2 (3.30 m/s²) (x - 0 m)
x = 1173.33 m
Rounded to 3 sig-figs, the runway must be at least 1170 meters long.
Answer:
0.191 s
Explanation:
The distance from the center of the cube to the upper corner is r = d/√2.
When the cube is rotated an angle θ, the spring is stretched a distance of r sin θ. The new vertical distance from the center to the corner is r cos θ.
Sum of the torques:
∑τ = Iα
Fr cos θ = Iα
(k r sin θ) r cos θ = Iα
kr² sin θ cos θ = Iα
k (d²/2) sin θ cos θ = Iα
For a cube rotating about its center, I = ⅙ md².
k (d²/2) sin θ cos θ = ⅙ md² α
3k sin θ cos θ = mα
3/2 k sin(2θ) = mα
For small values of θ, sin θ ≈ θ.
3/2 k (2θ) = mα
α = (3k/m) θ
d²θ/dt² = (3k/m) θ
For this differential equation, the coefficient is the square of the angular frequency, ω².
ω² = 3k/m
ω = √(3k/m)
The period is:
T = 2π / ω
T = 2π √(m/(3k))
Given m = 2.50 kg and k = 900 N/m:
T = 2π √(2.50 kg / (3 × 900 N/m))
T = 0.191 s
The period is 0.191 seconds.
Answer:
B, C, F
Explanation:
B: Sugar can be separated from the water by evaporating the water. This will leave large chunks of sugar.
C: Sugar gets spread out among the water.
F: Sugar water is a homogeneous <u>mixture. </u>Can't see the individual components because of the dissolving.
Hoped this helped! :)