The Action Force of this scenario is the pushing force of the Diver. The Reaction Force is the raft pushing back on the diver.
The Third Law of Motion states that "For every action, there is an equal and opposite reaction." Now when the diver dives off the raft, the raft is also pushing the same amount of force as the diver did as he dives off. The diver will then move forward and the raft on the other hand will move backwards.
The movement of the raft shows the opposite force. It will move backwards depending on how strong the diver will push off on the raft. And the amount of force he pushes on it, the raft will exert the same force so the stronger the force of the diver, the farther he will go because the raft will push him in that same direction as it goes backwards.
Answer:
The weight if the block is 10Newtons
Explanation:
The weight of any object is quantity of matter the object contains and it is always acting downwards on such body. This shows that the object is under the influence of gravity.
The weight of an object is calculated as mass of the object × its acceleration due to gravity
W = mg
Give the mass of the brick to be 1kg
g is the acceleration due to gravity = 10m/s²
Weight of the object = 1 × 10
= 10kgm/s² or 10Newtons
B is the correct answer for sure bro
Answer:
The pressure exerted by the woman on the floor is 1.9061 x 10⁷ N/m²
Explanation:
Given;
mass of the woman, m = 55 kg
diameter of the circular heel, d = 6.0 mm
radius of the heel, r = 3.0 mm = 0.003 m
Cross-sectional area of the heel is given by;
A = πr²
A = π(0.003)²
A = 2.8278 x 10⁻⁵ m²
The weight of the woman is given by;
W = mg
W = 55 x 9.8
W = 539 N
The pressure exerted by the woman on the floor is given by;
P = F / A
P = W / A
P = 539 / (2.8278 x 10⁻⁵ )
P = 1.9061 x 10⁷ N/m²
Therefore, the pressure exerted by the woman on the floor is 1.9061 x 10⁷ N/m²
Answer:
c. in the absence of an unbalanced force, an object at rest will stay at rest and an object in motion will stay in motion.
Explanation:
First law: things keep doing what they are doing, unless force is applied.