Answer:
Newton's law of universal gravitation is usually stated as that every particle attracts every other particle in the universe with a force that is directly proportional to the product of their masses and inversely proportional to the square of the distance between their centers.
Answer:
Work done required is 3567.2 J
Explanation:
Given :
Length of chain, l = 72 m
Mass of chain, M = 29 kg
Linear mass density of chain, μ = = = 0.40 kg/m
Let x be the length of the chain which lift to the top of the building.
Work done required to lift the chain is equal to the potential energy of the chain.
W = ∫μg (72 - x ) dx
Here g is acceleration due to gravity.
The limit of integration is from 0 to 14.
W = μg ( 72x - x²/2)
Substitute 0.40 kg/m for μ, 9.8 m/s² for g and 14 m for x in the above equation.
W =
W = 3567.2 J
Answer:
b. The side the boy is sitting on will tilt downward
Explanation:
Initially, the seesaw is balanced because the torque exerted by the boy is equal to the torque exerted by the girl:
where
Wb is the weight of the boy
db is the distance of the boy from the pivot
Wg is the weight of the girl
dg is the distance of the girl from the pivot
When the boy moves backward, the distance of the boy from the pivot ( increases, therefore the torques are no longer balanced: the torque exerted by the boy will be larger, and therefore the side of the boy will tilt downward.
The outer planets (Jupiter, Saturn, Uranus, Neptune) are called the "<u>GAS</u> giants".
The rocky planets are called "rocky" because they're made of <u>ROCK</u>.
Does this help guide you to the correct choice ?
Here's another hint: The MOST dense planet in our solar system, the one we call "Earth", is one of the 'rocky planets'.
Answer:
A jar of mixed nuts is the correct answer.
Explanation:
A heterogeneous mixture is a type of mixture that is not uniform in the appearance and composition varies throughout.
The heterogeneous mixture consists of multiple phases.
A jar of mixed nuts is an example of the heterogeneous mixture because they do not have a uniform composition component differ in proportion and they do not mix, instead, they form two different layers and they can be easily separated.