The number of protons an element has is its atomic number so the atomic number would be 29
Answer:
![4.0932672025\times 10^{-17}](https://tex.z-dn.net/?f=4.0932672025%5Ctimes%2010%5E%7B-17%7D)
Explanation:
= Activation energy = 160 kJ
T = Temperature = 510 K
R = Universal gas constant = 8.314 J/mol K
The fraction of energy is given by
![f=e^{-\dfrac{E_a}{RT}}\\\Rightarrow f=e^{-\dfrac{160000}{8.314\times 510}}\\\Rightarrow f=4.0932672025\times 10^{-17}](https://tex.z-dn.net/?f=f%3De%5E%7B-%5Cdfrac%7BE_a%7D%7BRT%7D%7D%5C%5C%5CRightarrow%20f%3De%5E%7B-%5Cdfrac%7B160000%7D%7B8.314%5Ctimes%20510%7D%7D%5C%5C%5CRightarrow%20f%3D4.0932672025%5Ctimes%2010%5E%7B-17%7D)
The fraction of energy is ![4.0932672025\times 10^{-17}](https://tex.z-dn.net/?f=4.0932672025%5Ctimes%2010%5E%7B-17%7D)
Answer:
The inductance of the inductor is 35.8 mH
Explanation:
Given that,
Voltage = 120-V
Frequency = 1000 Hz
Capacitor ![C= 2.00\mu F](https://tex.z-dn.net/?f=C%3D%202.00%5Cmu%20F)
Current = 0.680 A
We need to calculate the inductance of the inductor
Using formula of current
![I = \dfrac{V}{Z}](https://tex.z-dn.net/?f=I%20%3D%20%5Cdfrac%7BV%7D%7BZ%7D)
![Z=\sqrt{R^2+(L\omega-\dfrac{1}{C\omega})^2}](https://tex.z-dn.net/?f=Z%3D%5Csqrt%7BR%5E2%2B%28L%5Comega-%5Cdfrac%7B1%7D%7BC%5Comega%7D%29%5E2%7D)
Put the value of Z into the formula
![I=\dfrac{V}{\sqrt{R^2+(L\omega-\dfrac{1}{C\omega})^2}}](https://tex.z-dn.net/?f=I%3D%5Cdfrac%7BV%7D%7B%5Csqrt%7BR%5E2%2B%28L%5Comega-%5Cdfrac%7B1%7D%7BC%5Comega%7D%29%5E2%7D%7D)
Put the value into the formula
![0.680=\dfrac{120}{\sqrt{(100)^2+(L\times2\pi\times1000-\dfrac{1}{2\times10^{-6}\times2\pi\times1000})^2}}](https://tex.z-dn.net/?f=0.680%3D%5Cdfrac%7B120%7D%7B%5Csqrt%7B%28100%29%5E2%2B%28L%5Ctimes2%5Cpi%5Ctimes1000-%5Cdfrac%7B1%7D%7B2%5Ctimes10%5E%7B-6%7D%5Ctimes2%5Cpi%5Ctimes1000%7D%29%5E2%7D%7D)
![L=35.8\ mH](https://tex.z-dn.net/?f=L%3D35.8%5C%20mH)
Hence, The inductance of the inductor is 35.8 mH